Таким образом, мы видим, что первое исходное отношение-операнд можно восстановить из результата операции левого правого соединения, а если конкретнее, то применением к результату этого соединения (
И аналогично второе исходное отношение-операнд можно восстановить применением к результату операции правого внешнего соединения (
Приведем пример для более подробного рассмотрения работы операций левого и правого внешних соединений. Введем уже знакомые нам отношения
Несоединимый кортеж левого отношения-операнда
Условие внутреннего соединения отношений
Действительно, как мы можем видеть, в результате воздействия операции левого внешнего соединения, произошло пополнение результата операции внутреннего соединения несоединимыми кортежами левого, т. е. в нашем случае первого отношения-операнда. Пополнение кортежа на схеме второго (правого) исходного отношения-операнда по определению произошло при помощи Null-значений.
И аналогично результатом правого внешнего соединения по тому же, что и раньше, условию P = (b1 = b2) исходных отношений-операндов
Действительно, в этом случае пополнять результат операции внутреннего соединения следует несоединимыми кортежами правого, в нашем случае второго исходного отношения-операнда. Такой кортеж, как не трудно видеть, во втором отношении
И, наконец, рассмотрим третий вариант приведенных ранее операций соединения.
Операция полного внешнего соединения. Эту операцию вполне можно рассматривать не только как операцию, производную от операций внутреннего соединения, но и как объединение операций левого и правого внешнего соединения.
Операция полного внешнего соединения определяется как результат пополнения того же самого внутреннего соединения (как и в случае определения левого и правого внешних соединений) несоединимыми кортежами одновременно и левого, и правого исходных отношений-операндов. Исходя из этого определения дадим формулярный вид этого определения:
У операции полного внешнего соединения также имеется свойство, сходное с аналогичным свойством операций левого и правого внешних соединений. Только за счет изначальной взаимно-обратной природы операции полного внешнего соединения (ведь она была определена как объединение операций левого и правого внешних соединений) для нее выполняется свойство коммутативности:
И для завершения рассмотрения вариантов операций соединения, рассмотрим пример, иллюстрирующий работу операции полного внешнего соединения. Введем два отношения
Пусть
И пусть условием соединения отношений
Тогда результатом операции полного внешнего соединения отношений
Итак, мы видим, что операция полного внешнего соединения наглядно оправдала свое определение как объединения результатов операций левого и правого внешних соединений. Результирующее отношение операции внутреннего соединения дополнено одновременно несоединимыми кортежами как левого (первого,
5. Производные операции
Итак, мы рассмотрели различные варианты операций соединения, а именно операции внутреннего соединения, левого, правого и полного внешнего соединения, которые являются производными восьми исходных операций реляционной алгебры: унарных операций выборки, проекции, переименования и бинарных операций объединения, пересечения, разности, декартова произведения и естественного соединения. Но и среди этих исходных операций есть свои примеры производных операций.
1. Например, операция пересечения двух отношений является производной от операции разности этих же двух отношений. Покажем это.
Операцию пересечения можно выразить следующей формулой:
или, что дает тот же результат: