В ноябре 1877 года вице-президент Петербургской Академии наук, известный математик Виктор Яковлевич Буняковский получил письмо, в котором далекий уральский корреспондент сообщал: 2^(2^12) +1 — составное и один из делителей его равен 114 689. А позже тот же корреспондент сообщил Буняковскому, что и число 2^(2^23) +1 тоже составное и один из делителей его равен 167 772 161. Проверку делимости первого числа Первушина провел сам Буняковский, второго — профессор Егор Иванович Золотарев. Стало ясно: Первушин прав. Сенсация! Академик В. Я. Буняковский в донесении в отделение физико-математических наук Академии по поводу первой записки Первушина сказал: «По моему мнению, факт о новом случае делимости чисел вида 2^(2^n) + 1 не лишен научного интереса для занимающихся теорией чисел и желательно, чтоб он получил гласность». Академия поручила Буняковскому составить заметку. Что он и сделал. Эта заметка была опубликована на русском языке в «Записках Академии» и на французском языке в «Бюллетене Академии наук». Заметки были опубликованы вовремя, ибо через два месяца в записках Туринской Академии наук Италии была опубликована статья французского математика Э. Люка, в которой он приводит этот же случай делимости. Приоритет Первушина не вызывал сомнения. Наконец о математике с Урала заговорили в академических кругах как о крупном даровании, как о человеке фантастического трудолюбия. Сколько сил и времени надо было затратить, доказывая делимость этих чисел! Чтобы хоть немного почувствовать это, достаточно знать, что в числе 2^(2^23) + 1 — 2 525 223 цифры.
Только одержимый человек мог оперировать такими громадными числами и добиваться при этом выдающихся успехов!
Первушина влекли и совершенные числа.
Если сложить все делители натурального числа, но не равные этому числу, то эта сумма в одном случае будет меньше самого числа, а в другом — больше. Например, сумма делителей числа 8 равна 1 + 2 + 4 = 7, то есть меньше 8, а сумма делителей числа 12 равна 1 + 2 + 3 + 4 + 6 = 16, то есть больше 12. Естественно, возникает вопрос о существовании таких чисел, сумма делителей которых равнялась бы этим числам. Такие числа есть. И называются они совершенными.
Еще в Древней Греции знали совершенные числа 6 и 28.
Известный древнегреческий математик Евклид нашел еще два совершенных числа — 496 и 8128.
Только в 1460 году было найдено пятое совершенное число — 33 550 336. В шестнадцатом веке были найдены шестое и седьмое совершенные числа. В восемнадцатом веке Леонард Эйлер нашел восьмое совершенное число. Вот оно: 2 305 843 008 139 952 128. Прав был древнегреческий математик Никомах Герасский, который, рассуждая о совершенных числах, писал: «Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии».
Прошло более ста лет после того, как Эйлер нашел восьмое совершенное число. 27 октября 1883 года вице-президент Петербургской Академии наук академик В. Я. Буняковский получил очередную корреспонденцию от уральского математика. На этот раз Первушин сообщил, что нашел девятое совершенное число. Это число громадно и содержит 37 цифр. Для этого ему пришлось доказать, что число 261 — 1 — простое. Оно равно 2 305 843 009 213 693 951. Долгое время это было самым большим из известных простых чисел. В математике это число в честь первооткрывателя названо числом Первушина. Уму непостижимо, как мог он «вручную» найти гигантское число. Выдающийся французский математик, друг Декарта и Ферма, один из основателей Парижской Академии наук Марен Мерсенн говорил, что вечности не хватит для проверки простоты числа, имеющего 15—20 десятичных знаков. А в числе Первушина их 37.
Советский историк математики профессор И. Я. Депман так сказал по этому поводу: «И. М. Первушин, вычислив девятое совершенное число, поистине совершил настоящий подвиг».