Читаем Азимут «Уральского следопыта» полностью

Ряд чисел 1, 2, 3, 4, 5, 6, 7, 8… называется натуральным, а сами эти числа — натуральными. Возник этот ряд чисел в древности как результат счета предметов. Натуральный ряд чисел не скучен и не однообразен, о нем еще не все известно. Уже в Древней Греции математики заметили интереснейшие свойства натуральных чисел. Одни из этих свойств просто любопытны, другие имеют научное значение. Так, например, интересны числа 135 и 144. 135 = (1 + 3 + 5) x 1 x 3 x 5, а 144 = (1 + 4 + 4) x 1 x 4 x 4, то есть эти числа равны произведению своих цифр на их сумму.

А разве не поразительно, что сумма кубов натурального ряда чисел, начиная с 1, всегда равна квадрату суммы этих чисел. В самом деле, 13 +23 +33 = 1 +8 + 27 = 36 и (1 + 2 + 3)2 = 62 = 36. А занимается ли наука изучением натурального ряда чисел и свойств его или только чудаки-любители выискивают удивительное и необыкновенное в ряду «обычных» чисел? Тайны натурального ряда чисел привлекали виднейших математиков мира. Ими занимается теория чисел. Удивительная это наука! Формулировки доступны пятиклассникам, а решения их так сложны, что не найдены, хотя ими занимались крупнейшие математики, и не одно столетие. Видный ученый прошлого века Карл Фридрих Гаусс назвал арифметику царицей математики. Он имел в виду не школьный курс арифметики, а теорию чисел, которую иногда называют высшей арифметикой.

Известный немецкий математик Герман Минковский мечтал, что и «самая изысканная арифметика будет торжествовать в области физики и химии, когда, например, окажется, что существеннейшие свойства вещества аналогичны с разбиением простых чисел на сумму двух квадратов». Советский математик академик Б. Н. Делоне подтвердил мысль Г. Минковского: «Сейчас эта абстрактная область математики неожиданно мощно вторгается в самые различные отрасли науки. Она нашла применение в кристаллографии при исследовании решеток кристаллов. Теория чисел помогает решать проблемы теории информации и в сотни раз сокращать затраты машинного времени при решении специальных задач».

Какие же проблемы решает теория чисел? Это, например, проблема простых и совершенных чисел. Чем как раз и занимался странный священник с Урала Иван Михеевич Первушин…

Еще в училище он заметил: простые числа размещены в ряду натуральных чисел крайне неравномерно, то густо, то пусто. Учитель рассказал ему, что относительное число простых чисел постепенно уменьшается, что имеются такие множества натуральных последовательных чисел, среди которых нет ни одного простого числа, несмотря на то, что эти множества содержат миллион, миллиард и больше чисел. Тогда в голове у Вани и зародилась мысль, что количество простых чисел ограничено, следовательно, должно быть самое «последнее» простое число. Так казалось мальчику. Рассуждения учителя закономерно наталкивали Ваню на такую мысль. Мальчик хотел найти это громадное число. И только прочитав монографии П. Л. Чебышева «Об определении числа простых чисел, не превышающих данной величины» и «О простых числах», Первушин понял: его поиски наибольшего простого числа ни к чему не могли привести. Такого числа нет. Множество простых чисел неограниченно.

С этой задачей было покончено, но простые числа все равно не давали ему покоя. Они притягивали.

Первушин знал, что многие математики старались раскрыть закономерность распределения простых чисел в ряду натуральных, но это им не удалось сделать. Было много гипотез, но при тщательной проверке они оказывались неверными. Ошибались не только начинающие математики, но и авторитетнейшие ученые.

Один из творцов аналитической геометрии, теории вероятностей и теории чисел, известный французский математик Пьер Ферма в 1639 году высказал предположение о том, что числа вида 2^(2^n) + 1 являются простыми при любых целых неотрицательных значениях «n», то есть эта формула как бы «генератор» простых чисел. На самом деле, при n = 0 мы получаем простое число 3, при n = 1 — простое число 5, при n = 2 — простое число 17, при n = 3 — простое число 257, при n = 4 — простое число 65 537. Ферма утверждал, что и при любых других натуральных значениях «n» «генератор» будет давать только простые числа. При n = 5 он получил число 4 294 967 299. Ученый был убежден, что и это число простое, но доказать свое предположение он не смог, Только в 1733 году, то есть через 94 года после того, как Ферма высказал свое предположение, выдающийся русский математик, академик Леонард Эйлер доказал, что при n = 5 «генератор» Ферма не срабатывает, получившееся число — составное. Ферма ошибся. Может быть, это единственная осечка «генератора», — подумали ученые (авторитет Ферма был достаточно высок). Нет, не единственная.

Прошло почти 150 лет после открытия Эйлера, и математиков мира поразила новость. «Генератор» Ферма не срабатывал также и при n = 12 и при n = 23. На этот раз покой математиков нарушил безвестный священник из уральского села Замараевского Иван Михеевич Первушин. Этот упрямый человек решил задачу, над которой ломали голову известнейшие математики, задачу, которую не смог решить великий Ферма.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии