Как же рассчитываются звездные модели? Прежде всего основой таких расчетов являются физические законы, определяющие равновесную конфигурацию звезды. Об этих законах уже шла речь в § 6 и 7. Это, во-первых, условие гидростатического равновесия, которое должно выполняться для каждого элемента объема внутри звезды (см. формулу (6.1)). Во-вторых,— так называемое «условие лучистого равновесия», описывающее перенос излучения из недр звезды, к ее поверхности (см. уравнение (7.10)). Далее необходимо учитывать, как меняется непрозрачность звездного вещества в зависимости от изменения температуры и плотности, а также зависимость давления от плотности и температуры, т. е. «уравнение состояния». Для вещества «нормальных» звезд последнее описывается уравнением Клапейрона, а для белых карликов — формулой (10.1). Необходимо учитывать и очень сильную зависимость скорости выделения ядерной энергии от температуры (см. стр. 246). Кроме того, считаются заданными такие основные параметры «моделируемых» звезд, как их масса, светимость и радиус.
Ввиду сложности системы уравнений, описывающих состояние звезд, расчет модели не может быть сделан аналитически, т. е. по готовой, пусть даже очень громоздкой, формуле. Успех достигается только численным методом решения этих уравнений (являющихся, кстати, дифференциальными). Предполагается, что модель звезды сферически-симметричная, т. е. все характеристики какого-нибудь элемента ее объема (температура, плотность и пр.) зависят только от расстояния этого элемента от центра звезды. В чем же идея численного метода расчета? Представим себе, что звезда состоит из очень большого числа концентрических сферических слоев. В пределах каждого слоя (если он только выбран достаточно тонким) значения указанных характеристик можно считать постоянными. Зададим значения давления и температуры в центре звезды. Условия гидростатического равновесия позволят тогда найти давление на поверхности первой (самой внутренней) сферы. Далее, путем расчетов определяем, пользуясь формулой Клапейрона, температуру в центре. Затем, зная зависимость скорости ядерного энерговыделения от температуры и используя уравнение для переноса лучистой энергии (7.10), мы получим температуру на поверхности шаровой сферы, а затем, пользуясь формулой Клапейрона,— плотность. Такая процедура (как видим, довольно сложная!) позволяет по данным температуре, плотности и давлению в центре звезды получить те же основные характеристики на некотором относительно малом расстоянии от центра. После этого тем же методом процедура повторяется и получается значение характеристик звездного вещества, на поверхности второй сферы, радиус которой вдвое больше, чем у первой. Так, шаг за шагом, получается «разрез» всей звезды, т. е. значения основных характеристик ее вещества в зависимости от расстояния от центра. Для того чтобы расчет модели увенчался успехом, толщины воображаемых сфер, на которые разбивается звезда, должны быть достаточно малы. С другой стороны, конечно, непрактично делать их слишком маленькими, что привело бы к неоправданно большому увеличению объемов расчета. Практически количество таких сфер бывает порядка нескольких сотен, иногда даже нескольких тысяч.
Масса рассчитанной модели получается как результат суммирования «парциальных» масс, заключенных в пределах элементарных сфер. Учитывая «производство» термоядерной энергии в разных слоях, можно по окончании расчета получить теоретическую светимость звездной модели.