где m — длина волны, на которую приходится максимум функции Планка. При T = 107 К m = 3 10-8 см или 3Å — типичный рентгеновский диапазон. Количество лучистой энергии, заключенной в недрах Солнца (или какой-нибудь другой звезды), сильно зависит от распределения температуры с глубиной, так как u T4. Точная теория звездных недр позволяет получить такую зависимость, откуда следует, что у нашего светила запас лучистой энергии около 1045 эрг. Если бы ничто не сдерживало кванты этого жесткого излучения, они за пару секунд покинули бы Солнце и эта чудовищная вспышка, несомненно, сожгла бы все живое на поверхности Земли. Это не происходит потому, что излучение буквально «заперто» внутри Солнца. Огромная толща вещества Солнца служит надежным «буфером». Кванты излучения, непрерывно и очень часто поглощаясь атомами, ионами и электронами плазмы солнечного вещества, лишь чрезвычайно медленно «просачиваются» наружу. В процессе такой «диффузии» они существенно меняют свое основное качество — энергию. Если в недрах звезд, как мы видели, их энергия соответствует рентгеновскому диапазону, то с поверхности звезды кванты выходят уже сильно «отощавшими» — их энергия уже соответствует преимущественно оптическому диапазону.
Возникает основной вопрос: чем определяется светимость звезды, т. е. мощность ее излучения? Почему звезда, имеющая огромные ресурсы энергии, так «экономно» расходует их, теряя из этого «запаса» на излучение лишь малую, хотя и вполне определенную часть? Выше мы оценили запас лучистой энергии в недрах звезд. Следует иметь в виду, что эта энергия, взаимодействуя с веществом, непрерывно поглощается и в таком же количестве возобновляется. «Резервуаром» для «наличной» лучистой энергии в недрах звезд служит тепловая энергия частиц вещества. Не представляет особого труда оценить величину тепловой энергии, запасенной в звезде. Для определенности рассмотрим Солнце. Считая, для простоты, что оно состоит только из водорода, и зная его массу, легко найти, что там имеется приблизительно 2 1057 частиц — протонов и электронов. При температуре T 107 К средняя энергия, приходящаяся на одну частицу, будет равна kT = 2 10-9 эрг, откуда следует, что запас тепловой энергии Солнца WT составляет весьма солидную величину 4 1048 эрг. При наблюдаемой мощности солнечного излучения L = 4 1033 эрг/с этого запаса хватает на 1015 секунд или 30 миллионов лет. Вопрос состоит в том, почему Солнце имеет именно ту светимость, которую мы наблюдаем? Или, другими словами, почему находящийся в состоянии гидростатического равновесия газовый шар с массой, равной массе Солнца, имеет совершенно определенный радиус и совершенно определенную температуру поверхности, с которой излучение выходит наружу? Ибо светимость любой звезды, в том числе и Солнца, можно представить простым выражением
где Te — температура солнечной поверхности[ 19 ]. Ведь, в принципе, Солнце при тех же массе и радиусе могло бы иметь температуру, скажем, 20 000 К, и тогда его светимость была бы в сотни раз больше. Однако этого нет, что, конечно, не является случайностью.
Выше мы говорили о запасе тепловой энергии в звезде. Наряду с тепловой энергией звезда располагает также солидным запасом других видов энергии. Прежде всего рассмотрим гравитационную энергию. Последняя определяется как энергия гравитационного притяжения всех частиц звезды между собой. Она, конечно, является потенциальной энергией звезды и имеет знак минус. Численно она равна работе, которую нужно затратить, чтобы, преодолевая силу тяготения, «растащить» все части звезды на бесконечно большое расстояние от ее центра. Оценку величины этой энергии можно сделать, если найти энергию гравитационного взаимодействия звезды с самой собой:
Точный расчет с использованием простых методов высшей математики дает примерно вдвое большее значение, причем строго выполняется соотношение, известное в механике как «теорема о вириале»:
Рассмотрим теперь звезду не в равновесном, стационарном состоянии, а в стадии медленного сжатия (как это имеет место для протозвезды; см. § 5). В процессе сжатия гравитационная энергия звезды медленно уменьшается (вспомним, что она отрицательна). Однако, как это видно из формулы (7.9), только половина выделившейся гравитационной энергии перейдет в тепло, т. е. будет затрачена на нагрев вещества. Другая половина выделившейся энергии обязательно должна покинуть звезду в виде излучения. Отсюда следует, что если источником энергии излучения звезды является ее сжатие, то количество излученной за время эволюции энергии равно запасу ее тепловой энергии.