Читаем Звезды: их рождение, жизнь и смерть полностью

Характерной особенностью рентгеновских источников является наличие в ряде случаев наряду с орбитальными периодами весьма коротких периодов пульсации. Выше мы уже подробно говорили о 4,84-секундном периоде пульсаций у Центавра Х-3 и 1,24-секундном — у Геркулеса Х-1. В 1975 г. было сделано важное открытие «длинных» периодов пульсаций у рентгеновских источников. Например, у источника 0940—40, принадлежащего к типу а) и имеющего орбитальный период около 9 суток, найден пульсационный период в 283 с. Несколько длинных пульсационных периодов было найдено у так называемых «новых» (или «временных») рентгеновских источников[ 58 ]. Довольно длинный пульсационный период (405 с) был обнаружен у источника А 1118—61. Самый длинный период у известных к 1977 г. источников равен 31 минуте. Скорее всего продолжительные периоды пульсаций есть следствие торможения вращения нейтронной звезды намагниченной плазмой, в которую «погружена» двойная система. Возможно, что конкретным механизмом такого торможения является генерация вращающейся нейтронной звездой звуковых волн, а также обычная вязкость. Таким образом, период вращения нейтронной звезды — рентгеновского пульсара — как бы «подстраивается» к физическим характеристикам двойной системы, в которой он находится (период орбитального движения, мощность звездного ветра от «оптической» компоненты и пр.). Наблюдаемые вариации периодов вращения пульсаров скорее всего вызваны, в первую очередь, вариациями мощности звездного ветра, «питающего» путем аккреции нейтронную звезду.

Долгие годы, несмотря на ряд попыток, никак не удавалось доказать двойственность самого яркого рентгеновского источника Скорпион Х-1. Это оказалось очень трудной задачей, так как на ожидаемое регулярное изменение блеска оптической звезды, отождествляемой с этим источником, накладывались беспорядочные изменения с большой амплитудой. В то же время никакой периодичности в рентгеновском излучении (типа той, которая наблюдается у Центавра Х-3 и Геркулеса Х-1) у Скорпиона Х-1 не было обнаружено. Последнее обстоятельство, конечно, не является аргументом против двойственности этого источника: ведь вполне возможно, что плоскость орбиты наклонена под большим углом к лучу зрения!

Только в 1975 г. американским астрономам из анализа оптических наблюдений удалось найти орбитальный период Скорпиона Х-1, оказавшийся равным 0,787 ± 0,006 суток. Масса каждой из компонент меньше 2M, а скорость системы 145 км/с, т. е. очень велика.

Было также показано, что яркий источник Лебедь Х-2 представляет собой двойную систему с малой массой (MO 2M, MX 1M), сходную со Скорпионом Х-1 и Геркулесом Х-1. Орбитальный период Лебедя Х-2 T = 0,86 дня, а расстояние 2 кпс.

Особый интерес представляет проблема радиоизлучения рентгеновских звезд. Несколько таких объектов (например, Скорпион Х-1, Лебедь Х-1) оказались источниками очень слабого, переменного радиоизлучения. Заметим, однако, что само по себе это не является проблемой. В последние годы радиоизлучение было обнаружено от нескольких тесных двойных систем, в частности, от Алголя и Лиры. В таких системах мощные потоки газовых струй должны приводить к значительному радиоизлучению. Однако в сентябре 1972 г. наблюдалось уже не совсем обычное явление. Поток очень слабого радиоизлучения от рентгеновской звезды Лебедь Х-3 скачком увеличился в 2000 раз! Вспышка длилась несколько дней, спустя две недели она повторилась. Во время вспышки радиоисточник Лебедь Х-3 оказался одним из самых ярких на небе на сантиметровых волнах. Это позволило, в частности, по «пропечатавшимся» в его спектре межзвездным радиолиниям поглощения 21 и 18 см определить расстояние до него, оказавшееся около 7000 пс. Мощный всплеск радиоизлучения объясняется выбросом облака релятивистских частиц и плазмы. Странно, что рентгеновское излучение этого источника не претерпело при этом никаких изменений. По-видимому, детальное изучение рентгеновских звезд принесет астрономам еще много неожиданностей.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука