Почти круговая орбита рентгеновской звезды вокруг «оптической» следует из анализа данных наблюдений. Из вариаций 1,24-секундного периода пульсаций рентгеновского источника с периодом 1,70 дня получается его орбитальная скорость, равная 169 км/с. При этом радиус орбиты близок к 4 1011 см или 5,7 солнечного радиуса, в то время как радиус «оптической» звезды HZ Геркулеса в два раза превышает солнечный. Масса звезды HZ Геркулеса в два раза превышает массу Солнца, а масса ее рентгеновского спутника около одной солнечной массы. Зная радиус HZ Геркулеса и температуру ее «темной» стороны, можно найти светимость этой звезды, а следовательно, ее абсолютную величину. Сравнение найденной таким образом абсолютной величины и наблюдаемой величины позволяет определить расстояние до HZ Геркулеса, которое оказывается близким к 2000 пс. Так как галактическая широта Геркулеса Х-1 довольно велика, 35°, то можно сделать интересный вывод, что расстояние рентгеновского источника от галактической плоскости необычайно велико, свыше 1000 пс! Объяснение этого обстоятельства должно быть неразрывно связано с вопросом о происхождении рентгеновского источника Геркулес Х-1.
Из наблюдений следует, что импульсное рентгеновское излучение пульсара Геркулес Х-1 (так же, как и источника Центавр Х-3) подобно радиоизлучению «обычных» пульсаров носит направленный характер. В таком случае, совершенно так же, как и у радиопульсаров, наблюдаемый период пульсаций есть период вращения излучающего тела вокруг своей оси. Но с таким коротким периодом, как 1,24 с, может вращаться только нейтронная звезда. Таким образом, внешняя аналогия между радио- и рентгеновскими пульсарами превращается в тождество их природы: оба типа пульсаров являются нейтронными звездами. Но в то время как радиопульсары никогда не входят в состав двойных систем, рентгеновские пульсары наблюдаются только в двойных системах[ 55 ]. Имеется и еще одно важное различие между двумя видами пульсаров: периоды радиопульсаров монотонно растут, причем скорость увеличения периода каждого такого пульсара зависит только от его возраста, у источника же Геркулес Х-1 период пульсаций за полгода наблюдений уменьшился примерно на одну стотысячную своего значения. Это уменьшение периода происходило отнюдь не равномерно. Аналогичная картина имеет место и для источника Центавр Х-3.
Особую проблему представляет объяснение отсутствия 35-дневного цикла в оптической переменности HZ Геркулеса. Ведь если оптическая переменность этой звезды объясняется ее нагревом мощным потоком рентгеновского излучения от второй компоненты, то почему этот нагрев продолжается и в течение 24-х дней 35-дневного периода, когда источник рентгеновского излучения «выключен»? Здесь могут быть два объяснения, отнюдь не исключающие одно другое. Во-первых, можно предположить, что диаграмма излучения рентгеновского пульсара участвует в двух движениях. Если излучающая область не совпадает с полюсами вращающейся нейтронной звезды (а, например, находится около магнитных полюсов, как у радиопульсаров), то из-за вращения этой звезды около оси диаграмма излучения будет периодически проходить через наблюдателя. Здесь геометрия такая же, как у радиопульсаров. Представим себе теперь, что сама ось вращения описывает прецессионное движение (так называемая «свободная прецессия», вызванная небольшой асимметрией в распределении массы в нейтронной звезде) с периодом около 35 дней. Тогда можно представить себе, что в течение почти 2/3 этого периода диаграмма излучения рентгеновского пульсара не будет «смотреть» на Землю ни при какой фазе осевого вращения. В то же время она всегда будет направлена на какую-то часть поверхности находящейся рядом оптической звезды, которая находится достаточно близко и видна под большим телесным углом.
Недостатком этой модели являются довольно жесткие ограничения геометрического характера. Подозрительным также представляется и то, что ни у одного из известных радиопульсаров явление периодического «выключения» импульсов на длительный срок не наблюдается. Между тем явление свободной прецессии не должно, казалось бы, зависеть от того, является ли нейтронная звезда одиночной или входит в состав двойной системы. Альтернативой является предположение, что около компактного рентгеновского источника находится более или менее изотропный источник пока ненаблюдаемого мягкого рентгеновского или ультрафиолетового излучения, которое и «греет» находящуюся рядом оптическую звезду HZ Геркулеса. Этим источником может быть, например, горячий газовый диск, окружающий рентгеновский пульсар — быстро вращающуюся нейтронную звезду. Для подтверждения этой гипотезы решающее значение должны иметь будущие внеатмосферные наблюдения источника Геркулес Х-1 в указанной выше спектральной области[ 56 ].