Я подозреваю, что Гёдель углядел в этом мероприятии что-то сомнительное с философской точки зрения. По существу, от аксиоматической системы математической логики требовалось продемонстрировать свою собственную непротиворечивость. «Непротиворечивы ли вы?» – «Разумеется, да!» Пауза. «Ну да, ну да… Почему я должен
Вторая из них опирается на первую. Имея в виду, что противоречивая логическая система способна доказать что угодно, можно сделать вывод, что она, вероятно, способна доказать и утверждение «эта система непротиворечива». (Разумеется, она может с тем же успехом доказать утверждение «эта система противоречива», но забудем об этом.) Итак, какую гарантию истинности может предложить подобное доказательство? Никакой. Именно это интуитивное понимание отражено в ответе «ну да, ну да…». У программы Гильберта может быть единственный способ избежать этой ловушки: возможно, утверждение «эта система непротиворечива» не имеет смысла в пределах формальной аксиоматической системы. Безусловно, это утверждение не слишком похоже на арифметику.
Ответом Гёделя было
2
Чтобы расшифровать это число и превратить его обратно в строку, нужно воспользоваться единственностью разложения на простые множители.
Существуют и другие способы зашифровать символьную строку превращением ее в число: данный способ математически элегантен и притом совершенно непрактичен. Но Гёделю достаточно было того, что он существует.
В виде чисел он предлагал кодировать не только утверждения, но и доказательства, которые представляют собой некоторую последовательность утверждений. Логические правила вывода каждого утверждения из предыдущих накладывают ограничения на то, какие из этих чисел могут соответствовать логически верному доказательству. Так что утверждение «P есть верное доказательство утверждения S» само может рассматриваться как утверждение в арифметике: «Если расшифровать P в последовательность чисел, то последним из них будет число, соответствующее S». Гёделева система нумерации позволяет нам перейти от метаматематического утверждения о существовании некоторого доказательства к арифметическому утверждению о соответствующих числах.
Гёдель хотел проделать этот фокус с фразой «это утверждение ложно». Он не мог сделать это напрямую, поскольку это не арифметическое утверждение. Но его можно
Гёдель быстро превратил этот результат в свою теорему о непротиворечивости: если некоторое аксиоматическое описание арифметики непротиворечиво, то доказать его непротиворечивость невозможно. Это тот самый момент «ну да, ну да…» во всей его формальной красе: если бы в один прекрасный момент кто-нибудь нашел вдруг доказательство того, что арифметика непротиворечива, то мы могли бы сразу же сделать вывод о том, что на самом деле это не так.