Проведем доказательство лишь первого утверждения, поскольку второе доказывается аналогично. Отсутствие наибольшего числа в левом классе означает, что какое бы положительное рациональное число а, квадрат которого меньше двух, мы ни взяли, существует такое целое число n > 0, что (а + 1/n)2 < 2. Это значит, что рациональное число a + 1/n также будет принадлежать левому классу и, следовательно, A не может считаться наибольшим.
Будем исходить из очевидно верного утверждения, что для любого положительного рационального числа а, квадрат которого меньше двух, существует такое целое положительное число n, что выполняется неравенство
(2a+1)/(2-a2) < n
Действительно это утверждение может быть получено по
2a/n + 1/n < 2 - a2
Поскольку 2a/n + 1/n2 << 2a/n + 1/n. то верно, что 2a/n + 1/n2 < 2 - a2, а это неравенство равносильно неравенству (а + 1/n)2 < 2. Утверждение доказано[7].
Теория Дедекивда основана на том, что действительные числа отождествляются с сечениями в области рациональных чисел. Это удается сделать потому, что для сечений оказывается возможным определить операции сложения, вычитания, умножения и деления, а также отношения равенства и неравенства. При этом сечения, имеющие пограничные числа, отождествляются с рациональными числами, а сечения, не имеющие пограничных чисел с иррациональными (сечение в рассмотренном нами случае отождествляется с числом √2)[8].
При ознакомлении с теорией сечений может возникнуть недоумение: как можно определять (действительные) числа через объекты, как будто, совершенно другой природы? Но это недоумение легко снимается. В самом деле, что такое числа? Можно считать, что это — такие сущности, которые могут находиться в определенных отношениях и над которыми можно производить определенные операции, причем эти отношения и операции обладают определенными свойствами (коммутативность, дистрибутивность и т. д.). Сечения как раз и могут находиться в отношениях равенства и неравенства и допускают такие операции над собой, которые обладают нужными свойствами. Определены же сечения, как считал Дедекинд, абсолютно четко и логично — они введены на основе рациональных чисел, по поводу которых никаких сомнений у математиков не возникает.
Подход Дедекинда был заметным шагом вперед в уяснении «природы» математического анализа. Он позволил создать стройную теорию действительных чисел, в частности, доказать важную теорему о свойстве
В теории Вейерштрасса иррациональные числа понижаются как бесконечные непериодические дроби, то есть Ограниченно продолжающиеся вереницы цифр (например десятичных знаков), которые нельзя фактически выписать и вряд ли можно представить в воображении В теории Дедекинда всякое действительное число — это «компактная» система из двух объектов: левого и правого классов сечения во множестве рациональных чисел. И все же и в этой теории фатальный призрак трудностей, связанна с идеей бесконечности, призрак, преследующий математику с античных времен[9], не изгоняется, а лишь маскируется под нечто «конечнообразное»: ведь множества, образующие левый и правый классы, бесконечны.
Дедекиндово построение хорошо раскрывает нам образ мышления, который был присущ нескольким поколениям ученых. Всмотримся пристальнее в ход рассуждений, ведущих к определению действительного числа по Дедекинду. В нем можно усмотреть два пункта, уязвимых для критики.
Пункт первый. Каждый из двух классов сечения мыслится как единый объект, как нечто данное сразу и целиком. Но ведь бесконечное множество нельзя за конечное время перебрать «поэлементно», и его задание - «эффективное» задание, то есть такое, при котором с ним можно «фактически» работать, требует указания метода установления того, что произвольный элемент принадлежит или не принадлежит данному множеству. Иногда такой метод, однако, может приводить к выкладкам, которые нельзя реально осуществить. Именно так обстоит дело в теории Дедекинда, которая предполагает, что для любого сечения мы умеем ответить на вопрос, к какому из двух его классов — левому или правому — принадлежит произвольное рациональное число.
Проиллюстрируем возникающую здесь ситуацию на примере. Как, скажем, может производиться разбиений области рациональных чисел, дающее сечение для числа
1 + 1/1! + 1/2! + 1/3! ...