693. От резонерства, ведущего к бесконечному регрессу, следует отказаться не потому, что ‘так мы никогда не сможем достичь цели’, а потому, что здесь вовсе отсутствует какая-либо цель; так что бессмысленно говорить о том, что «мы не сможем ее достичь».
Мы с легкостью убеждаем себя, что, пробежав несколько этапов регресса, мы могли бы потом, так сказать, в отчаянии от него отказаться. В то время как его бесцельность (отсутствие цели в исчислении) следует выводить из исходной позиции.
694. Вариант диагонального метода Кантора: Пусть
Следует доказать, что
Но правилом образования сотого места
Правило игры гласит «Делай то же, что и…..!» – и в особом случае оно становится правилом «Делай то же, что и раньше!»
695.
Вопрос – можно так сказать – это задание. Понимать задание означает: знать, что нужно делать. Конечно, задание может быть весьма туманным – например, когда я говорю: «Принеси ему что-нибудь, что ему поможет!» Но это может означать: подумай о нем, его состоянии и т. д. в дружеском ключе и потом принеси ему что-то, что, на твой взгляд, ему подойдет.
696. Математический вопрос – это вызов. И можно было бы сказать: он имеет смысл, если побуждает нас к математической деятельности.
697. Можно было бы сказать далее, что вопрос в математике имеет смысл, если он стимулирует математическую фантазию.
698. Перевод с одного языка на другой является математической задачей, а перевод лирического стихотворения, к примеру, на иностранный язык вполне можно сравнить с математической
699. Представь себе людей, которые вычисляют с помощью ‘чрезвычайно сложных’ цифр. Они предстают как фигуры, возникающие при наложении наших цифр друг на друга. Например, они записывают число π до пятого знака после запятой следующим образом:
Наблюдающему за ними будет сложно догадаться, что они делают. И возможно, они сами не смогут ничего объяснить. Ведь будучи записанной другим шрифтом, эта цифра может изменить свой внешний (данный нам) вид до полной неузнаваемости. И то, что делают эти люди, будет казаться нам чисто интуитивным.
700. Зачем нам счет? Он оказался удобным? Мы пользуемся нашими понятиями, например психологическими понятиями, потому что это выгодно? – Да, у нас есть
701. Впрочем, различие между тем, что называют предложениями в математике, и предложениями повседневного опыта проявится во всей красе, если поразмыслить над тем, имеет ли смысл сказать: «Я хочу, чтобы 2 × 2 равнялось 5!»
702. Если считать, что уравнение 2 + 2 = 4 является доказательством предложения «существуют четные числа», то станет видно, сколь нестрого употребляется здесь слово «доказательство». Из уравнения 2 + 2 = 4 должно следовать предложение «существуют четные числа»?! – А что будет доказательством существования простых чисел? – Метод разложения на простые множители. В этом методе, однако,
703. «Дети, чтобы успевать по математике в начальной школе, вынуждены быть большими философами; за неимением этого им остается тренировка и тренировка».
704. Рассел и Фреге толкуют понятие как свойство вещи. Но это довольно противоестественно ‒ толковать слова «человек», «дерево», «трактат», «круг» как свойства субстрата.
705. Понимание функции Дирихле[80] возможно только там, где она не стремится выразить бесконечный закон одним списком, ибо не существует бесконечного списка.
706. Числа не являются основанием для существования математики.
707. Понятие ‘упорядочения’, например, рациональных чисел и понятие ‘невозможности’ так упорядочить иррациональные числа. Сравни это с тем, что называют ‘упорядочением’ цифр. Сходным образом сравни различие между ‘присоединением’ одной цифры (или ореха) к другой и ‘присоединением’ всех целых чисел к четным числам; и т. д. Повсюду сдвиги понятий.
708. Очевидно, существует способ изготовления линейки. Этот метод предполагает идеал, я имею в виду, процедуру приближения к неограниченной
Или скорее так: Только в том случае, если существует процедура приближения к неограниченной возможности, геометрия этой процедуры может (а не должна) быть эвклидовой.