Эта модель позволяет объяснить еще один важный пункт в учении мертонской школы о движении. И в античности, и в средние века доминировало определение равноускоренного движения, согласно которому возрастание величины скорости (или быстроты и медленности) в такого рода движении происходит прямо пропорционально проходимому расстоянию. Такого мнения придерживались Стратои, Александр Афродизийский, Симпликий, Альберт Саксонский, Марсилий Ингенский, а также (в своих ранних работах) и Галилей. Гораздо более плодотворной оказалась концепция, развитая в Мертон-колледже, в соответствии с которой отсчет градусов скорости велся по шкале времени. Историки физики согласны в том, что введениие временной шкалы для определения скорости в равноускоренном движении дало мощный толчок развитию кинематики, явившись одной из главных предпосылок создания математической концепции движения. Но мы не найдем у них ответа па вопрос, что побудило мертонцев отказаться от традиционного представления; переход к временной шкале оказывается ничем не обоснованным, результатом счастливого стечения обстоятельств. Но если допустить, что главной рабочей интуицией мертонцев, хотя и не высказанной ими в явной форме и, по-видимому, даже осознаваемой ими далеко не во всех деталях, является интуиция движения как процесса, состоящего в развертывании бесчисленного множества последовательностей, то станет очевидным, что они просто не могли иначе определить шкалу скоростей, характеризующих равноускоренное движение. Ибо если последовательность скоростей есть результат наличия intensio motus, т. е. начала, порождающего эту последовательность, то такое порождение может иметь место только во времени, которое составляет его необходимую предпосылку.
4.7. Мертонская теорема о среднем градусе скорости
Главным результатом математических вычислений, проводившихся в Мертон-колледже, были формулировка и доказательство фундаментальной кинематической теоремы, которая приравнивает (в отношении пути, пройденного за определенный отрезок времени) равноускоренное движение равномерному, скорость которого равна скорости равноускоренного движения в средний момент времени последнего. В современной символической записи мертонская теорема средней скорости будет выглядеть следующим образом:
1) S = ½ ∙ Vf ∙ t — для случая ускорения от состояния покоя;
2) S = (v0 + (vf – v0)/2)/t — для ускорения от начальной скорости v0.
где S обозначает проходимое расстояние, vf — конечную скорость, a t — время ускорения.
Рассмотрим вначале доказательство Суайнсхеда, а затем доказательство Хейтсбери.
Выше приводилось одно из мертонских доказательств теоремы о среднем градусе, принадлежащее Суайнсхеду. Доказательству в трактате Суайнсхеда предпосланы формулировка и разъяснение самой теоремы: «Всякая широта движения, равномерно приобретаемая или утрачиваемая, соответствует своему среднему градусу… Я говорю, что широта, которая приобретается, соответствует своему среднему градусу в том смысле, что ровно столько же будет пройдено посредством той широты, таким именно образом приобретаемой, сколько и посредством ее среднего градуса, если в продолжение всего (totum) времени движение будет происходить с тем средним градусом»[89]. Чтобы доказать это утверждение, Суайнсхед предлагает проделать мысленный эксперимент (излагая его рассуждение, мы постараемся воспроизвести основную идею, не следуя буквально способам ее выражения). Предположим, что тело
2) «сколько одно (x) приобретает, столько другое (y) утрачивает». Если эксплицировать пункты, выполнение которых подразумевается краткой формулировкой второго требования, то они состоят в следующем. Пусть движение х, у начинается в момент времени t0, a U обозначает произвольный момент времени их движения. В момент ti x будет иметь скорость bi (bi > b), а у — скорость ai (ai < a). Тогда в соответствии со вторым требованием bi—b = a—ai.
Если с = (a – b)/2, т. е. является средним градусом широты, то x и y достигнут с одновременно, так что x и y будут иметь одинаковую скорость с в момент tk (tk = (ti – t0)/2), где ti — момент окончания движения х, у. Точнее, если обозначить через
скорости x, y в момент времени tn, то
Отсюда
Виолетта Павловна Гайденко , Георгий Александрович Смирнов
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая научная литература / Научпоп / Образование и наука