Мультиплексоры предназначены для выбора одного из нескольких сигналов в тех случаях, когда заранее известно их число. Часто это неизвестно. Более того, в ряде случаев количество микросхем, выходные сигналы которых выбираются мультиплексором, изменяется в процессе эксплуатации устройств. Наиболее яркий пример — это компьютеры, в которых в процессе эксплуатации изменяется объем оперативной памяти, количество портов ввода-вывода, количество дисководов. В таких случаях невозможно для объединения нескольких выходов ключей, реализованных на элементах «И», воспользоваться логическим элементом «ИЛИ».
Тем не менее, необходимо иметь возможность передавать информацию с нескольких выходов на один или несколько входов. Этого достигают, выделяя один или несколько проводников, по которым информация может передаваться в различных направлениях. Такая система проводников называется шиной.
Для объединения нескольких выходов на один вход в случае, когда заранее не известно, сколько микросхем нужно объединять, используется два способа:
— монтажное ИЛИ;
— шинные формирователи.
Исторически первым вариантом объединения выходов нескольких микросхем были схемы с открытым коллектором (монтажное «ИЛИ»). Схема монтажного «ИЛИ» приведена на рис. 2.24.
Рис. 2.24.
Монтажное «ИЛИ» позволяет объединять до 10 микросхем на один провод. Естественно, для того, чтобы микросхемы не мешали друг другу, только одна из них должна выдавать информацию на линию шины. Остальные микросхемы в этот момент времени должны быть отключены от шины (т. е. выходной транзистор должен быть закрыт). Это обеспечивается внешней микросхемой управления, не показанной на данном рисунке. В качестве подобной микросхемы может служить обычный дешифратор.
На схемах логические элементы с открытым коллектором обозначаются, как это показано на рис. 2.25.
Рис. 2.25.
Недостатком приведенной схемы объединения выходов нескольких микросхем на один провод является низкая скорость передачи информации, обусловленная затянутым передним фронтом. Это обусловлено тем, что ток заряда паразитной емкости шины проходит через сопротивления R1 и R2, которые много больше сопротивления открытого транзистора, обеспечивающего разряд этой емкости. Величину сопротивления нагрузки R1 и R2 невозможно снизить меньше некоторого предела, определяемого напряжением низкого уровня, который определяется в свою очередь допустимым током через выходной транзистор. В результате заряд происходит заметно медленнее, чем разряд. Временные диаграммы напряжений на входе и выходе микросхемы с открытым коллектором приведена на рис. 2.26.
Рис. 2.26.
Обратите внимание, что нагрузочные сопротивления включены на обоих концах проводника, образующего шину. Это позволяет уменьшить отражения сигнала от ненагруженных концов линии передачи сигнала, образованной данным проводником. Сопротивления резисторов R1 и R2 должны быть равны волновому сопротивлению этой линии передачи.
Естественным решением проблемы затягивания переднего фронта сигнала было бы включение транзистора в верхнее плечо схемы, но при этом возникает проблема сквозных токов, из-за которой невозможно соединять выходы цифровых микросхем непосредственно, и решением которой как раз является использование микросхем с открытым коллектором на выходе (монтажное «ИЛИ»). Причина возникновения сквозных токов поясняется на рис. 2.27. Показана ситуация, когда микросхема № 2 пытается сформировать на выходе уровень логической единицы, а микросхема № 1 — уровень логического нуля. Буквами «3» и «О» для выходных транзисторов обозначены закрытое и открытое состояния соответственно.
Рис. 2.27.
Эта проблема исчезает, если появляется возможность закрывать оба выходных транзистора, как в верхнем, так и в нижнем плече выходного каскада. Если оба транзистора закрыты, то такое состояние выхода микросхемы называется третьим состоянием или z-состоянием (высокоомным состоянием). Возможность переводить выход в третье состояние появляется в специализированных микросхемах. Принципиальная схема выходного каскада микросхемы с тремя состояниями на выходе приведена на рис. 2.28.
Рис. 2.28.