«Официальный» путь состоит в том, чтобы применять специальные микросхемы приемопередатчиков RS-232 (правильнее их было бы называть преобразователями уровня), это, например, МАХ202, МАХ232, ADM202 и подобные, которые содержат внутри преобразователь — инвертор напряжения, подобный тому, что мы применяли для питания измерителя в автономном режиме (см.
Рис. 18.3. Вариант одноканального преобразователя уровней RS-232 — UART на микросхеме МАХ202
Рис. 18.3.
Одной из этих схем следует дополнить наш измеритель температуры и давления, чтобы получить возможность соединения его с ПК. Если выбран разъем DB-9M (штыревая часть, как на самом ПК), спроектированный для установки на плату (т. е. типа DRB), то вы сможете соединить ваше устройство с компьютером только одним способом: с помощью симметричного нуль-модемного кабеля, который имеет на обоих концах гнездовые части. Удлинительный кабель RS-232, в котором линии передачи не перекрещиваются, имеет на одном из концов гнездовую, на другом — штыревую часть, и с его помощью подсоединить компьютер не удастся. Можно, конечно, спроектировать устройство в расчете на удлинительный кабель (тогда надо поставить разъем DRB-9F и поменять местами выводы RxD и TxD).
Применение таких приемопередатчиков не решает одной проблемы — гальванической развязки устройства с COM-портом. А это очень даже может понадобиться, поскольку на корпусе компьютера «висит» обычно вполне приличный потенциал.
Заметки на полях
По этой причине, кстати, нужно внешнее металлическое обрамление разъемов DB-9 соединять с «землей» и со стороны компьютера, и со стороны прибора — оно первое входит в соприкосновение и потенциалы выравниваются до того, как успевают соприкоснуться контакты разъема. Заставлять пользователей подключать устройства исключительно при выключенном компьютере — «прошлый век».
Автор этих строк однажды чуть не убил одно несчастное животное (до сих пор в кошмарах вспоминается), когда проектировал прибор для измерения внутричерепного давления у обезьян. Главная причина всей этой «катавасии» в отсутствии, разумеется, нормального заземления в наших постройках, но даже при его наличии развязка все равно не помешает.
Один из вариантов такой развязки, реализованный на относительно быстродействующем оптроне типа 6N139, показан на рис. 18.4. Верхняя часть схемы (оптрон D1) служит для передачи сигналов от контроллера к компьютеру. Сигнал TxD с контроллера должен иметь положительный уровень не ниже 4,5 В под нагрузкой, в противном случае следует увеличить номинал резистора R1.
Рис. 18.4.
Приемная часть построена на оптроне D2. Ток через входной светодиод оптрона идет во время положительного уровня напряжения на линии TxD COM-порта, а диод VD3 защищает этот светодиод от обратного напряжения.
Здесь питание той части схемы, которая подает сигнал к компьютеру, обеспечивается преобразователем напряжения TMA0505D фирмы TRACO, имеющим гальваническую развязку между входом и выходом. Он обеспечивает преобразование положительного напряжения +5 В в два напряжения ±5 В.
Схема спроектирована в расчете на то, что оптоизолягор выполнен в форме удлинительного кабеля для COM-порта. Разъем Х2 типа DRB и остальные детали, кроме разъема XI, монтируют на макетной плате размерами 30x60 мм. С противоположной от разъема стороны распаивают трехжильный плоский кабель примерно 0,5 м длиной, закрепляют его на плате и соединяют с разъемом XI. Разъем XI может быть не только DB, а любого удобного типа, например, IDC. После проверки плату затягивают в отрезок термоусадочного кембрика подходящего диаметра. Разъем Х2 вместе с платой соединяется прямо с COM-портом, ответная часть разъема X1 располагается на плате устройства.