Если спрашивают не о числе недель, а о числе дней, то прибегают к такому приему: половину числа лет множат на 73 и приписывают нуль – результат и будет искомым числом (эта формула станет понятна, если заметить, что 730 = 365 × 2). Если мне 24 года, то число дней получим, умножив 12 × 73 = 876 и приписав нуль – 8760. Само умножение на 73 также производится сокращенным образом, о чем речь впереди (стр. 131).
Поправка в несколько дней, происходящая от високосных лет, обыкновенно в расчет не принимается, хотя ее легко ввести, прибавив к результату четверть числа лет (в нашем примере 24:4 = 6; общий результат, следовательно, 8766).
«Сколько мне секунд?»
На этот вопрос[32] также можно довольно быстро ответить, пользуясь следующим приемом: половину числа лет умножают на 63; затем ту же половину множат на 72, результат ставят рядом с первым и приписывают три нуля. Если, например, число лет 24, то для определения числа секунд поступают так:
63 × 12 = 756; 72 × 12 = 864; результат: 756864000.
Указанными ниже приемами ускоренного умножения эти операции облегчаются до чрезвычайности, и миллионный результат получается очень быстро. Советую читателю попробовать произвести то же вычисление и обыкновенным путем, чтобы на деле убедиться, какая экономия во времени получается при пользовании указанной формулой и нижеприведенными приемами.
Как и в предыдущем примере, здесь не приняты в расчет високосные годы – ошибка, которой никто не поставит вычислителю в упрек, когда приходится иметь дело с сотнями миллионов.
Что касается правильности нашей формулы, то она выясняется очень просто. Чтобы определить число секунд, заключающихся в данном числе лет, нужно лета (в нашем примере 24) умножить на число секунд в году, т. е. на 365 × 24 × 60 × 60 = 31536000. Мы делаем то же самое, но только большой множитель 31536 разбиваем на два (приписка трех нулей сама собой понятна). Вместо того, чтобы умножать 24 × 31536, умножают 24 на 31500 и на 36, но и эти действия мы для удобства вычислений заменяем другими, как это видно из следующей схемы:
Теперь остается лишь приписать три нуля – и мы имеем искомый результат: 756864000.
Приемы ускоренного умножения
Мы упоминали раньше, что для выполнения тех отдельных действий умножения, на которые распадается каждый из указанных выше приемов, существуют также удобные способы. Некоторые из них весьма не сложны и удобоприменимы; они настолько облегчают вычисления, что мы советуем читателю вообще запомнить их, чтобы пользоваться при обычных расчетах. Таков, например, прием перекрестного умножения, весьма удобный при умножении двузначных чисел. Способ этот восходит к грекам и индусам и в старину назывался «способом молнии» или «умножением крестиком».
Пусть дано перемножить 24 × 32, мысленно располагаем числа по следующей схеме, одно под другим:
Теперь последовательно производим следующие действия:
1) 4 × 2 = 8 – это последняя цифра результата.
2) 2 × 2 = 4; 4 × 3 = 12; 4 + 12 = 16; 6 – предпоследняя цифра результата; 1 запоминаем.
3) 2 × 3 = 6, да еще оставшаяся единица, имеем 7 – это первая цифра результата.
Известны все цифры произведения: 7, 6, 8 – 768.
После непродолжительного упражнения прием этот усваивается очень легко.
Другой способ, состоящий в употреблении так называемых дополнений, удобно применяется в тех случаях, когда перемножаемые числа близки к 100.
Предположим, что требуется перемножить 92 × 96. «Дополнение» для 92 до 100 будет 8, для 96 – 4. Действие производят по следующей схеме:
множители: 92 и 96
«дополнения»: 8 и 4
Первые две цифры результата получают простым вычитанием из множителя «дополнения» множимого или наоборот; т. е. из 92 вычитают 4 или из 96 – 8. В том и другом случае имеют 88; к этому числу приписывают произведение «дополнений» 8 × 4 = 32. Получают результат 8832.
Что полученный результат верен, наглядно видно из следующих преобразований:
Существует прием и для ускоренного умножения трехзначных чисел; он также сберегает много времени, но применение его сложнее и требует некоторого умственного напряжения, так как приходится одновременно держать в уме несколько цифр.
Какой день недели?
Умение быстро определять день недели, на какой приходится та или иная дата (например, 17 января 1893 г., 4 сентября 1943 г. и т. п.) основано на поучительном разборе особенностей нашего календаря, который мы сейчас и проделаем.