При вычислении вероятности сложных событий необходимо проявлять внимание к тому, чтобы перечислить все возможные альтернативы. Если нам нужно установить вероятность выпадения по меньшей мере 1 орла при двух бросках монеты, то перечисление альтернатив дает 3 благоприятных события. Следовательно, вероятность получения по меньшей мере 1 орла равна ¾ Видные ученые допускали ошибки вследствие того, что не учитывали все возможные альтернативы. Например, согласно Д′Аламберу, вероятность выпадения по меньшей мере одного орла равна ⅔ О н перечислил возможные события как О, ОР, РР , утверждая, что если орел выпадет с первого раза, то нет необходимости продолжать броски, с тем чтобы получить, по крайней мере, одного орла. Однако данный анализ ошибочен, поскольку перечисленные им возможные события не являются равновероятными: первая альтернатива заключает в себе возможность двух различных событий, являющихся равновероятными с остальными.
Вероятность совместного появления двух событий иногда может высчитываться, даже если события не являются полностью независимыми. Допустим, в урне находится 3 белых и 2 черных шара, и предположим, что вероятность извлечения каждого из шаров одинакова по сравнению с остальными. Какова вероятность извлечения 2 белых шаров один за другим при первых двух попытках, если шары не заменяются при второй попытке? Изначально вероятность извлечения белого шара равна ⅗ Если извлечен белый шар (и при этом не заменен новым), то в урне остается два белых и два черных шара. Вероятность извлечения второго белого шара, если первый извлеченный шар был белым , равна 2∕4. Из этого следует, что вероятность извлечения двух белых шаров при описанных условиях равна ⅗× ½ или же 3∕10 [48] . Вообще Р ( а ) является вероятностью события а , а Ра(Ь) является вероятностью появления события Ь при появлении события а. Вероятность совместного появления событий: Р(аЬ) = Р(а) х Ра(Ь).
Вероятность одного из взаимоисключающих событийИногда нам требуется не вероятность совместного появления событий, а вероятность того, что произойдет одно из событий. Для этих целей мы вводим строго дизъюнктивные, или взаимоисключающие, события. Два события являются взаимоисключающими, если оба не могут произойти одновременно (если происходит одно, то другое отсутствует). При бросании монеты такие события, как выпадение орла или решки, считаются взаимоисключающими. Можно доказать, что вероятность того, что произойдет одно из взаимоисключающих событий, является суммой вероятностей каждого из событий. Какова вероятность получения 2 орлов или 2 решек при двух бросках монеты при допущении того, что вероятность выпадения орла равна ½и что броски осуществляются независимо? Вероятность выпадения двух орлов является произведением вероятностей выпадения орла при первом броске и орла при втором броске, т. е. ¼ Сходным образом вероятность выпадения двух решек равна ¼ Следовательно, вероятность выпадения либо двух орлов, либо двух решек равна ¼+ ¼ т. е. ½ Тот же результат получается при непосредственном применении определения вероятности к четырем возможным событиям: ОО, ОР, РО, РР . Два из перечисленных событий являются благоприятными. Следовательно, искомая вероятность равна 2/4 или ½ Вообще, если Р ( а ) и Р ( b ) являются возможностями двух взаимоисключающих событий соответственно, то вероятность получения одного из двух событий равна Р ( а + b ) = Р ( а ) + Р ( b ).