В данном наборе допущений не делается явной ссылки ни на какую предметную область. Понятия, необходимые для того, чтобы сформулировать данные аксиомы, имеют совершенно общий характер. Идеи класса, подкласса, элементов класса, отношение принадлежности к классу и дополнение к классу, понятие числа – все это фундаментальные элементы аппарата логики. Таким образом, если нам удастся открыть импликации этих аксиом, то это случится не благодаря свойствам пространства как такового. На самом деле ни одна из этих аксиом не может считаться суждением, ни одна из них сама по себе не является истинной или ложной. Сами по себе символы S, 1-класс, А, В и т. д. являются переменными. Каждая из этих переменных обозначает любую сущность из класса возможных сущностей, с единственным условием: эта сущность должна «выполнять» или согласовываться с формальными отношениями, сформулированными в аксиомах. Однако до тех пор, пока символы не наделены специфическим значением, аксиомы являются пропозициональными функциями, а не суждениями [44] .
Наши допущения, таким образом, заключаются в том, что некоторые отношения рассматриваются в качестве существующих между неопределенными терминами. Однако читатель обратит внимание, что, несмотря на то что ни один термин не определен явно, им (терминам), тем не менее, дано имплицитное определение. Они могут обозначать все что угодно, при условии, что это обозначаемое согласуется с отношениями, утверждаемыми относительно них. Данная процедура характеризует современную математическую технику. К примеру, в аксиоматике Евклида явные определения даны точкам, прямым, углам и т. д. В современной трактовке геометрии эти элементы определяются имплицитно посредством аксиом. Такая процедура, как мы сможем убедиться, обусловливает возможность большого числа различных интерпретаций неопределенных терминов, что позволяет проявить тождественность структуры в различных условиях.
Теперь мы докажем шесть теорем, некоторые из которых можно посчитать банальными следствиями наших допущений.