Читаем Введение в логику и научный метод полностью

Очевидно, что в данных аксиомах речь идет о точках и прямая на плоскости. На самом деле, если мы отбросим седьмую аксиому, то получим аксиомы, введенные Вебленом и Янгом для «проективной геометрии» на плоскости в их трактате по данному предмету. Читателю вовсе не обязательно что-либо знать о проективной геометрии, для того чтобы понять то, что будет сказано ниже. Чем же являются точки, прямая и плоскости? Читателю может показаться, что он знает, чем они являются. Он способен нарисовать точки и прямые с помощью карандаша и линейки, и, быть может, ему покажется, что в приведенных аксиомах делаются утверждения относительно свойств и отношений таких геометрических сущностей.

Это достаточно сомнительно, ибо свойства нарисованных на бумаге точек могут значительно отличаться от утверждаемых свойств. Однако в любом случае вопрос о том, согласуются ли реальные точки и прямые с тем, что утверждается в аксиомах, является вопросом прикладной, а не чистой математики. Следует отметить, что в самих аксиомах не говорится о том, чем на самом деле являются точки, прямые и т. д. Для того чтобы вывести следствия из данных аксиом, необязательно знать, что именно мы понимаем под терминами «точка», «прямая», «плоскость». Эти аксиомы имплицируют ряд теорем не в силу визуальной репрезентации, которую им может придать читатель, а в силу их логической формы. Точки, прямые и плоскости могут быть какими угодно сущностями, недетерминированными в любом отношении за исключением тех отношений, которые утверждаются в аксиомах.

Давайте поэтому отбросим всякую явную отсылку к точкам, прямым и плоскостям и, тем самым, элиминируем все апелляции к пространственной интуиции при выведении из этих аксиом ряда теорем. Предположим, в таком случае, что вместо слова «плоскость» мы будем использовать букву «S»; а вместо слова «точка» – фразу «элемент S». Очевидно, что если рассматривать плоскость (S) как набор точек (элементов S), то прямая может пониматься как класс точек (элементов), являющийся подклассом точек на плоскости (S). Следовательно, мы заменим слово «прямая» (line) выражением «1-класс». Таким образом, наш исходный набор аксиом обретает следующий вид:

Аксиома 1\'. Если А и В являются различными элементами S, то существует по меньшей мере один 1-класс, содержащий одновременно А и В.

Аксиома 2\'. Если А и В являются различными элементами S, то существует не более одного 1-класса, содержащего одновременно А и В.

Аксиома 3\'. Любые два 1-класса имеют по меньшей мере один общий элемент S.

Аксиома 4\'. В S существует по меньшей мере один 1-класс.

Аксиома 5\'. Каждый 1-класс содержит по меньшей мере три элемента S.

Аксиома 6\'. Все элементы S не принадлежат одному и тому же 1-классу.

Аксиома 7\'. Ни один 1-класс не содержит более трех элементов S.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия