Поскольку меньшая посылка должна быть утвердительной, ее предикат М не может быть распределенным. Поэтому М
должен быть распределен в большей посылке (аксиома 1), что, в свою очередь, делает бо′льшую посылку общим суждением.
С помощью специальной теоремы I мы можем исключить комбинации АЕ, АО, а с помощью второй теоремы – комбинации IA и ОА. В первой фигуре обоснованные заключения имеют место только в комбинациях АА, AI, ЕА и EI. Следовательно, шесть правильных модусов – это AAA, [AAI], АII, ЕАЕ, [ЕАО], ЕIO.
Модусы, обведенные нами в круг, называются подчиненными, или ослабленными, модусами, поскольку, несмотря на то что посылки в них предписывают выведение заключения, которое будет общим суждением, действительное заключение, тем не менее, является лишь частным суждением, и поэтому «более слабым», чем могло бы быть. Четырем из этих шести правильных модусов были даны специальные имена, в которых гласные соответствуют символам количества и качества посылок и заключения. Так, модус АЛА обозначается именем «Barbara», All – «Darii», ЕАЕ – «Celarent» и ЕIO – «Ferio». Данные имена были изобретены для формирования мнемонического средства, с помощью которого можно было бы вспомнить различные модусы в каждой из фигур, а модусы второй, третьей и четвертой фигур сводить к модусам первой фигуры. Ниже мы еще вернемся к проблеме сведения.
§ 7. Специальные теоремы и правильные модусы второй фигуры
Форма второй фигуры обозначается как
Докажем следующие теоремы.
Поскольку одна из посылок является отрицательным суждением, заключение также является отрицательным суждением (аксиома 4), и Р, больший термин, должен быть распределенным. Поэтому Р должен быть распределенным и в большей посылке (аксиома 2), а сама посылка должна быть общим суждением.
Теорема I исключает комбинации АА и AI, а теорема II исключает комбинации IA и ОА. В данной фигуре у нас остается четыре комбинации: АЕ, АО, ЕА и EI, из которых мы получаем шесть правильных модусов. АЕЕ (Camestres), [АЕО], АОО (Baroco), ЕАЕ (Cesare), [ЕАО] и ЕIO (Festino). Модусы, обведенные в круг, являются ослабленными силлогизмами.
§ 8. Специальные теоремы и правильные модусы ТРЕТЬЕЙ фигуры
Исходя из символьной формы третьей фигуры