Читаем Введение в логику и научный метод полностью

§ 3. Виды измерения дисперсии

Мы видели, что группы могут отличаться друг от друга не только своими центральными тенденциями, но также и степенью разброса составляющих их значений.

Амплитуда вариации

Простой способ указать степень разброса значений в группе – это установить амплитуду вариации. Она представляет собой численную разность между максимальными и минимальными значениями признака в рассматриваемой группе. Если доходы в Соединенных Штатах варьируются от $500 до $10 ООО ООО, то амплитуда вариации будет равна $9 999 500. Однако этот метод не является удовлетворительным, поскольку, во-первых, крайние значения вариации могут быть неизвестны, а во-вторых, поскольку добавление или элиминация нескольких зарплат на краях совокупности могут существенно изменить амплитуду вариации. Более того, амплитуда вариации не говорит нам о том, как именно распределяются различные доходы внутри группы. Две группы чисел 1, 5, 5, 6, 6, 7, 7, 7, 10 и 1, 2, 2, 2, 2, 10 имеют одинаковую амплитуду вариации, хотя форма распределения в каждой из этих совокупностей является разной.

Среднее отклонение

Можно найти и более точные методы для обозначения степени вариации. Предположим, рост мужчин в определенной группе, измеренный в дюймах, таков: 61, 63, 64, 65, 65, 66, 67, 68, 69, 72. Средний рост равен 66 дюймам. Теперь высчитаем отклонение каждого роста от среднего роста путем вычитания последнего из каждого отдельного роста. (Можно взять любой средний показатель в качестве основы для высчитывания отклонений. Мы же для простоты ограничимся средним арифметическим.) Отклонения таковы: -5, -3, -2, -1, -1, 0, 1,

2, 3, 6. У нас может возникнуть желание высчитать среднее арифметическое этих чисел. Однако это бесполезно, поскольку сумма отклонений от среднего значения всегда равна нулю. Однако мы можем пренебречь отрицательными знаками в отклонениях и высчитать среднее арифметическое. Полученный результат будет называться средним отклонением, или средней ошибкой. Среднее отклонение в нашем случае равняется 24/10, или 2,4.

Среднее отклонение приписывает одинаковую значимость как большим, так и малым отклонениям. Вообще, чем меньше среднее отклонение, тем более сконцентрированы исследуемые предметы вокруг среднего значения. Все факторы, упоминавшиеся при обсуждении среднего арифметического, также релевантны и в случае со средним отклонением.

Однако нам следует обратить внимание на то, что большое среднее отклонение не является необходимым признаком большой флуктуации в значениях группы. Быть большим можно только относительно некоторого стандарта. Если мы многократно измерим высоту горы, то среднее арифметическое наших измерений может равняться 5000 футов, а среднее отклонение – 10 футам. По сравнению со средним арифметическим среднее отклонение является маленьким числом. Однако если бы мы измеряли длину квартала в городе, то среднее отклонение в 10 футов было бы существенным. По этой причине среднее отклонение иногда делится на средний показатель, относительно которого измеряются отклонения. Получившийся результат называется «коэффициент дисперсии». В предыдущем примере об измерении роста людей этот коэффициент равнялся 2,4/66, или 0,036+.

Стандартное отклонение

Для многих целей, особенно тех, в которых преобладают элементы теории вероятности, в качестве меры дисперсии рассматривается стандартное отклонение. Оно вычисляется путем деления суммы квадратов отклонений от среднего показателя на количество предметов в группе и извлечения из получившегося результата квадратного корня. В примере с измерением роста мы получаем

что равняется 9 и является средним арифметическим суммы квадратов отклонений. Стандартное отклонение равняется

, или 3. Если x1, х2, хn являются отклонениями от среднего арифметического из n значений, то σх, т. е. стандартное отклонение, равно

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия