Наконец, суждение «суверенитет являет собою волю народа как целого, либо только одной его части» является дизъюнктивным и может быть выражено как «суверенитет является волей народа как целого или он является волей одной его части». Поскольку данное суждение эквивалентно строго дизъюнктивному суждению, противоречить ему будет следующая конъюнкция: «суверенитет не является волей народа как целого и он не является волей одной его части».
Из сказанного следует, что суждение, противоречащее условному суждению, а также строгой или нестрогой дизъюнкции, всегда может быть выражено в форме конъюнкции.
С другой стороны, суждение, противоречащее конъюнкции, является либо условным, либо дизъюнктивным, либо строго дизъюнктивным суждением. Символьная запись выражает отношения между сложными суждениями в более компактном и точном виде. Поскольку
(
суждение, противоречащее любому из приведенных, будет противоречить каждому из них. Следовательно,
(
Иными словами, суждением, противоречащим суждению «если
Читателю следует обратить внимание на эквивалентность (
(
Данное отношение известно как теорема де Моргана. В ней утверждается, что отрицанием дизъюнкции (или суждением, противоречащим дизъюнкции) является конъюнкция, в которой конъюнкты противоречат соответствующим им дизъюнктам. В иной форме данная теорема выглядит следующим образом:
(
Здесь утверждается, что отрицанием конъюнкции является дизъюнкция, в которой дизъюнкты противоречат соответствующим конъюнктам.
Мы удостоверились в том, что специально введенные символы существенным образом способствуют более ясному выражению логической структуры суждений, которая скрывается за громоздкостью обыденного языка. Вследствие этого читатель, несомненно, согласится с тем, что символы не препятствуют, а скорее способствуют пониманию. Обобщающая сила современной логики, равно как и современной математики, возможна во многом благодаря адекватности символической записи, принятой в этих дисциплинах.
В качестве проверки усвоения этой записи предложим читателю привести противоречащее суждение для суждения «некоторые люди – бедные, но честные». Следует понимать, что сила слова «но» в данном суждении заключается в том, что бедные чаще всего являются бесчестными, хотя случается и так, что некоторые из них являются честными. Следовательно, явным значением здесь будет «некоторые люди – бедные и честные, и некоторые люди – бедные и бесчестные». Из этого следует, что суждение «некоторые люди не бедные и честные» не противоречит исходному утверждению, равно как не противоречит ему и суждение «все люди не являются одновременно бедными и честными или все люди не являются одновременно бедными и бесчестными». Сходным образом суждение «Джон не вернулся вчера домой на велосипеде» не будет противоречить суждению «Джон вчера вернулся домой на велосипеде». Этому суждению скорее будет противоречить суждение «Джон не вернулся домой, или Джон не вернулся домой вчера, или Джон не вернулся домой на велосипеде».
Данное отношение было проиллюстрировано в традиционном квадрате противопоставлений. Однако можно найти примеры подобного противопоставления и помимо тех, что были указаны в логическом квадрате. Рассмотрим следующие суждения: «мой рост – семь футов» и «мой рост – шесть футов»; «Сократ был мудрейшим из греков» и «Платон был мудрейшим из греков»; «Колумб был первым европейцем, открывшим Америку» и «Лиф Эриксон был первым европейцем, открывшим Америку». Все они представляют пару противоположных суждений, выходящих за рамки рассмотрения традиционного подхода. Очевидно, что общие суждения могут иметь больше чем одно противоположное суждение.
Какое суждение будет противоположным суждению «книга была украдена, или я ее переложил»? Одним из противоположных суждений будет «книга не была украдена, и я ее не переложил, и мой брат ее не одалживал». Эти два сложных суждения могут быть вместе ложными, например, в том случае, если суждение «мой брат одолжил ее» истинно. Вообще нижеприведенная символическая запись представляет пару противоположных сложных суждений:
(
и
(
где