Рассмотрим условное суждение «если треугольник – равнобедренный, то углы у его основания равны». Утверждать это суждение, как мы уже знаем, означает утверждать, что истинность антецедента предполагает истинность консеквента, или что не может быть такого, чтобы антецедент был истинным, а консеквент – ложным. Следовательно, в данном условном суждении утверждается, что конъюнктивное суждение «треугольник является равнобедренным, и углы при его основании неравны» ложно. Или же, что строго дизъюнктивное суждение «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны» является истинным. Таким образом, из условного суждения мы можем вывести дизъюнкцию.
Более того, из строгой дизъюнкции мы также можем вывести условное суждение. Если дано суждение «неверно, что треугольник является равносторонним и вместе с этим углы у его основания неравны», то истинность одного дизъюнкта несовместима с истинностью другого: если один дизъюнкт истинен, другой должен быть ложным. Следовательно, из этого строго дизъюнктивного суждения мы можем вывести суждение «если треугольник является равнобедренным, то углы у его основания равны». Таким образом, может быть найдена строгая дизъюнкция, эквивалентная условному суждению.
Сказанное выше можно записать, используя введенные нами символы:
[(Треугольник является равнобедренным) (углы у его основания равны)] [(Треугольник является равнобедренным) .(углы у его основания равны)''
Из данного рассуждения также становится видно, как мы можем вывести эквивалентное условное суждение из любого другого условного суждения. Если в эквивалентной строгой дизъюнкции предполагается, что второй дизъюнкт является истинным, то первый дизъюнкт должен быть ложным. Следовательно, мы можем вывести суждение «если углы у основания треугольника неравны, то треугольник не является равнобедренным». Мы можем записать:
[(Треугольник является равнобедренным) (углы у его основания равны)] [(Углы у основания треугольника равны)'(треугольник является равнобедренным)'.
Данные эквивалентные условные суждения считаются противопоставленными (контрапозитивными) друг другу.
Рассмотрим (нестрогую) дизъюнкцию «треугольник является равнобедренным или углы у его основания равны». Утверждать данное суждение значит утверждать, что, по крайней мере, один из дизъюнктов является истинным. Поэтому, если бы один из дизъюнктов был ложным, другой должен был бы быть истинным. Следовательно, мы можем заключить из данной дизъюнкции условное суждение «если треугольник является равнобедренным, то углы у его основания равны». Более того, данная дизъюнкция может быть выведена из данного условного суждения. Это условное суждение эквивалентно суждению «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны», в котором утверждается, что, по крайней мере, один из дизъюнктов должен быть ложным. Из данной дизъюнкции мы можем вывести суждение «треугольник не является равнобедренным или углы у его основания равны». Мы можем записать данную эквивалентность:
[(Треугольник является равнобедренным)' (углы у его основания равны)] [(Треугольник является равнобедренным) (углы у его основания равны)].
Из этого следует, что для любого условного суждения существует эквивалентное дизъюнктивное суждение, эквивалентное строго дизъюнктивное суждение, а также эквивалентное условное суждение. Похожее утверждение может быть сделано и относительно любого дизъюнктивного суждения и любого строго дизъюнктивного суждения. С другой стороны, конъюнкция не является эквивалентной ни одной из трех других форм сложных суждений.
Теперь приведем эквивалентные суждения для суждения «если он счастлив в браке, то он не бьет свою жену». Этими суждениями являются: «если он бьет свою жену, то он не является счастливым в браке», «он не является счастливым в браке или он не бьет свою жену» и «неверно, что он счастлив в браке и вместе с этим он бьет свою жену». В символьной записи данные суждения выглядят следующим образом:
[(Он счастлив в браке) (он не бьет свою жену)] [(Он не бьет свою жену)' (он счастлив в браке)' [(Он счастлив в браке)' (он не бьет свою жену)] [(Он счастлив в браке) . (он не бьет свою жену)']'
Данные эквивалентности можно выразить более компактно, а формы эквивалентных суждений – более ясно, если принять еще некоторые конвенции относительно символов. Пусть р означает антецедент условного суждения, a q – его консеквент. Любое условное суждение может быть формализовано как (
(