Этот процесс может быть упрощен путем записи чисел упорядоченным образом, как это показано на примере преобразования 25 в двоичное число.
ПРИМЕР:
Десятичное число 25 равно двоичному числу 11001. Дробные числа преобразовываются по другому: число умножается на 2 и целая часть записывается как двоичная дробь.
ПРИМЕР:
Умножение на 2 продолжается до тех пор, пока не будет достигнута необходимая точность. Десятичная дробь 0,85 равна 0,110110 в двоичной форме.
ПРИМЕР:
Десятичное 20 — двоичному 10100
и
Комбинируя два числа, получим 20,6510 = 10100,10100112.
Это 12-разрядное число является приближенным, потому что преобразование дроби было прервано после получения 7 разрядов.
31-2. Вопросы
1. Чему равно значение каждого разряда 8-разрядного двоичного числа?
2. Чему равно значение каждого разряда для 8 разрядов правее десятичной точки?
3. Преобразуйте следующие двоичные числа в десятичные:
4. В чем состоит процесс преобразования десятичных чисел в двоичные?
5. Преобразуйте следующие десятичные числа в двоичные:
Степени 2: 23 22 21 20
Двоичный вес: 8 4 2 1
Основным достоинством этого кода является то, что он допускает легкое преобразование из десятичной формы в двоичную, и наоборот. Поэтому двоично-десятичный код используется всегда, если не оговорено другое.
Каждая десятичная цифра (от 0 до 9) представляется двоичной комбинацией следующим образом:
Хотя с помощью четырех двоичных разрядов можно представить 16 чисел (24), шесть кодовых комбинаций для чисел, больших 9 (1010,1011,1100, 1101, 1110 и 1111), в коде 8421 не используются.
Для того чтобы выразить любое десятичное число с помощью кода 8421, замените каждую десятичную цифру соответствующим 4-разрядным кодом.
ПРИМЕР:
Для преобразования числа из двоично-десятичного кода в десятичную систему, разбейте число на группы по 4 разряда. После этого запишите десятичные цифры, соответствующие каждой 4-разрядной группе.
ПРИМЕР:
Замечание: Если в крайней группе слева не хватает разрядов до четырех, то к ней добавляются нули.
31-3. Вопросы