Действительно, принцип наименьшего действия настолько всеобъемлющ, что теперь доминирует в физике элементарных частиц: все фундаментальные квантовые теории, от Стандартной модели (глава 15) до самых экзотических, выражены с его помощью. При построении теории определяются все описываемые ею объекты: частицы, поля, силы и энергии — и собираются в одну большую формулу, называемую «лагранжианом» в честь работ Лагранжа, о которых упоминалось выше (мы познакомимся с некоторыми лагранжианами физики элементарных частиц в конце этой книги). После написания лагранжиана теории ее разработка может считаться законченной. Вы хотите применить теорию к конкретной задаче? Все, что нужно, — это «всего лишь» выразить принцип наименьшего действия математически, затем продраться через зубодробительные формулы, выполняя необходимые вычисления, и… готово, получайте результат! Сейчас начинающие физики впервые знакомятся с принципом наименьшего действия, сформулированным Эйлером и Лагранжем, в его современной форме. Это прекрасное уравнение:
Функция
Помню, когда еще я был студентом-физиком, мы все были в восторге, когда изучали принцип наименьшего действия, уравнение Эйлера-Лагранжа и его квантовые эквиваленты. Формула выглядела волшебной: записываешь хороший лагранжиан, нажимаешь на рычаг — и вот оно, решение сложного механического движения или задачи взаимодействия разных частиц. Но вскоре пришло разочарование: уравнение Эйлера-Лагранжа ничего не говорит об объектах, не раскрывает энергии или силы их взаимодействия. Только если вы определили свое видение мира и сумели обобщить его в форме Лагранжа, уравнение подскажет, как ваша теория будет применяться в конкретном случае.
Поэтому чуда нет, но процедура «лагранжиан + принцип наименьшего действия» оказала и оказывает сильнейшее влияние на физику. И может быть, не только на физику, но и в обычной жизни? Разве не говорят нам психологи о минимизации действия? Найдите счастье в простой жизни. Эффективно работайте, избегайте бесполезных конфликтов и не становитесь рабами ненужных вещей. Эх, вот бы еще найти этот лагранжиан счастья…
Глава 3
Главный принцип динамики (второй закон Ньютона)
Что означает это простое уравнение? Из него следует, что сила равна произведению массы на ускорение. Боюсь, что данное утверждение ни о чем не скажет неподготовленному читателю. Попробуем прояснить этот закон, записав его в эквивалентной форме:
Или же сформулируем его словами: «Сила
А может, нет? Исторически потребовались столетия, чтобы написать такую простую формулу. Самое трудное состояло не в том, чтобы выписать отношения между переменными в простой формуле:
Что-то эдакое = То «умножить на» Это.
Намного важнее оказалось получить четкие определения основных понятий и концепций механики, чтобы описать движение тел простым соотношением. И эти определения оказались отнюдь не тривиальны…
Что определяет движение? Естественным представляется вначале подумать о скорости или об изменении направления движения. Но как можно дать точные определения этим интуитивно понятным терминам?
Еще б0льшей точности в определении требует описание механического воздействия, прикладываемого к объекту. Как можно количественно оценить это воздействие? И что же такое сила?
Можно ли определить силу универсальным образом? Есть ли что-либо общее между моей рукой, которая бросает камень, и пушкой, которая стреляет ядром?
До Галилея и Ньютона движение тела описывали плохо определенным, «неформальным» языком, в котором доминировало влияние Аристотеля. Для Аристотеля неподвижность была синонимом совершенства. Объект, на который никто не действует, неподвижен. Если