Сам закон впервые математически был четко сформулирован около 1620–1630 гг. Снеллом Ван Ройеном и Рене Декартом. Вопрос о том, кто был первым, — лишь один из многих бесполезных споров между англичанами и французами, поскольку в действительности разработка этого закона растянулась на несколько столетий. Она началась еще в X в. в арабском мире. Позднее свою лепту в его совершенствование внесли некоторые великие умы, в числе которых был Иоганн Кеплер.
Общая физическая идея, о которой я говорил выше, была открыта Пьером де Ферма около 1660 г. Он обнаружил, что может вывести «закон Декарта» (он тогда не знал о Снелле…), если исходить из двух очень простых предположений: во-первых, скорость света зависит от среды, в которой он распространяется, и, во-вторых, свет распространяется по такой траектории, что время движения из одной точки в другую оказывается минимальным. В этих предположениях величины
Вы должны себе представить, что в середине XVII в. значение скорости света было еще неизвестно, а некоторые даже утверждали, что свет распространяется мгновенно. Конечно, Ферма не имел абсолютно никакого способа измерить эту скорость в разных средах: чтобы пройти 1 м в вакууме, свету требуется всего 3 миллиардных доли секунды, а в воде — в 1,4 раза больше, т. е. 4,2 миллиардных доли секунды. Эти длительности были слишком малы, чтобы их можно было измерить в то время[2]. Тем не менее Ферма не только сформулировал принцип минимального времени, но и показал, что он работает, если скорость света в воде или стекле меньше, чем в воздухе, в 1,2–1,5 раза. По иронии судьбы, Ферма таким образом противостоял Декарту, который считал, что скорость света выше, если среда плотнее. Но принцип сработал великолепно, подтвердив гипотезу Ферма.
Первоначально принцип Ферма был рожден интуицией или ясновидением: «природа всегда действует кратчайшим или наиболее простым путем». Эта идея (точнее такой способ получения физического закона) оказалась чрезвычайно плодотворной: вместо того чтобы писать уравнение, связывающее два угла, или уравнение движения, формулируется общий принцип, гласящий, что луч света выбирает путь минимальной длительности[3].
Принцип «природа не делает ничего лишнего» был применен для решения некоторых задач механики Пьером Луи Моро де Мопертюи в XVIII в., а именно к движению материальных объектов под действием внешних сил, и был назван «принципом наименьшего действия». Несколько позднее этот принцип был дополнительно формализован Леонардом Эйлером и, главным образом, Жозефом Луи Лагранжем, все еще в приложении к задачам теоретической механики. Было математически определено понятие «действие»: это интеграл от энергии системы за время ее эволюции. Движение тел по траекториям наименьшего действия занимает наименьшее время, или при этом энергия принимает минимальные значения, или имеет место наилучшее сочетание изменения энергии и времени: самый экономичный путь — «самый простой», как сказал Ферма. Что касается оптики, то энергия светового луча постоянна, поэтому время движения должно быть минимальным. Существенным новшеством в механике Лагранжа-Эйлера стала самая общая трактовка того, что такое «путь». В этой трактовке «путь механической системы» охватывал всю ее эволюцию: положение и скорость объектов, энергию (включающую в себя запасенную (например, напряжение пружины) и кинетическую энергию). Эволюция даже очень сложной механической системы должна подчиняться принципу наименьшего действия.
Затем, уже в XX в., ученые поняли, что новая физика, так называемая квантовая механика, о которой мы поговорим позже, может быть прекрасно описана с помощью принципа наименьшего действия. В квантовом мире все подвержено непрерывным флуктуациям. Положения и скорости квантовых частиц не могут быть определены точно ни в какой момент времени, и в связи с этим не являются подходящими переменными для расчетов. Глобальные величины, такие как различные формы энергии, позволяют давать описание системы, имеющее предсказательную силу, и оказываются проще в использовании.
Если определить правильные значения для всех видов энергии системы, то принцип наименьшего действия позволяет предсказать, как эти энергии будут преобразовываться друг в друга при взаимодействии квантовых частиц. Оказывается возможным определить, как частицы в атоме уравновешивают друг друга, следуя «наилегчайшему пути», как говорил Ферма, или, выражаясь современным языком, «совершая движение по траектории минимального действия во все моменты времени».