В 1911 году голландский физик Хайке Камерлинг-Оннес (1853–1926) сделал удивительное открытие: когда температура определенных металлов, а именно ниобия и олова, понижается до нескольких градусов выше абсолютного нуля (−273 °C), электрическое сопротивление исчезает. В этой ситуации электрические токи будут течь вечно; вечными будут и связанные с ними магнитные поля. Явление, открытое Камерлинг-Оннесом, называется сверхпроводимостью. Теперь мы знаем: оно возникает потому, что при таких низких температурах все электроны сцепляются друг с другом и движутся мимо тяжелых атомов металла, не отдавая им энергии. Токи в сверхпроводниках можно использовать, чтобы получать мощные (и постоянные) магнитные поля; главное при этом – поддерживать достаточно низкую температуру электрических проводов. Если, например, вам доводилось когда‐нибудь проходить МРТ-обследование, на вас действовало магнитное поле, порожденное электрическим током в сверхпроводнике. Сверхпроводящие магниты – важнейшая часть крупнейших в мире ускорителей частиц, таких как Большой адронный коллайдер в Швейцарии. На их основе также создаются проекты следующего поколения скоростных поездов, которые должны будут функционировать на основе так называемой магнитной левитации. Подобные разработки ведутся по всему миру, а в Китае подобные поезда уже даже введены в строй. Как часто случается в науке, открытие малопонятного явления сверхпроводимости привело к появлению отраслей промышленности, ежегодно приносящих многомиллиардные доходы.
Мы можем представить себе миры настолько холодные (например, бродячие планеты вроде тех, о которых мы говорили в главе 11), что металл на их поверхности или в недрах был бы сверхпроводящим. Токи, текущие в такой сверхпроводящей структуре, получить было бы достаточно просто – их породило бы движение планеты между крупномасштабными переменных магнитными полями в межзвездном пространстве. Появившийся в результате ток изменял бы магнитные поля в недрах самой планеты и в пространстве вокруг нее, что порождало бы новую волну электрических токов; они, в свою очередь, производили бы магнитные поля, и так далее. Таким образом мы можем наблюдать, как система взаимодействующих друг с другом токов и полей могла бы приобрести сложность, сопоставимую со сложностью живых существ. Была бы такая система живой или нет – вопрос открытый. И все же перед нами еще один пример того, как могла бы выглядеть неорганическая жизнь.
Могло бы на сверхпроводящей планете появиться что‐то вроде естественного отбора? Можно представить себе малые самоподдерживающиеся электромагнитные «пакеты», движущиеся в недрах такой планеты. Те из них, которые были бы наиболее «крепкими» – то есть, например, те, чьи магнитные поля обеспечивали бы более прочный барьер между содержимым «пакета» и окружающей средой, – существовали бы дольше. Они бы с большей вероятностью постепенно росли за счет электрических или магнитных полей в окружающей среде. Если бы эти пакеты развились до момента, в который они способны поделиться, у них, таким образом, появилось бы средство передать характеристики, делавшие их более крепкими, своим «отпрыскам». И это могло бы стать началом некоторого естественного отбора, в котором выживает сильнейший.
Наконец, обратимся к еще одной гипотетической форме жизни, которая существует только в научной фантастике. В своем романе «Академия на краю гибели» Айзек Азимов рассказывает о планете, все составные части которой образуют взаимосвязанную систему. Планета такого же типа – Пандора – появляется также в фильме «Аватар», где ее целостность и взаимосвязанность обеспечивается посредством некоей нейросети. По сути, такая планета как целое является живым организмом, хотя отдельные ее части живыми могут быть, а могут и не быть. Вы, наверное, понимаете, что такая планета – логическое завершение гипотезы Геи, о которой мы рассказывали в главе 3. (Кстати, планета в романе Азимова называется точно так же – Гея.) Здесь следует учесть, что изучение любого отдельного фрагмента такой планеты – скажем, дерева или камня – не сказало бы вам примерно ничего о громадном объеме единой живой структуры, частью которой этот фрагмент является. С тем же успехом вы могли бы изучать поведение отдельного транзистора, полностью забыв о том, что он – лишь крохотный элемент суперкомпьютера.
Как мы уже говорили в главе 3, нет никаких научных предпосылок для того, чтобы заключить, что такая сверхвзаимосвязанная система могла бы существовать в реальности. С другой стороны, если бы она действительно существовала, подозреваем, что людям‐исследователям такую форму жизни было бы труднее распознать и понять, чем какую бы то ни было еще.
Искусственная жизнь