Клетки iCHELL и весь подход Кронина к созданию объектов, которые в каком‐то смысле можно было бы назвать «живыми», основан на экзотическом, но все-таки виде химических реакций. Тем временем другие ученые в своих поисках «жизни
Что же выяснили теоретики? Оказалось, что при определенных условиях электрические и магнитные силы в системе «плазма‐пыль» собирают пыль в то, что можно описать как микроскопические «штопоры». Эти образования тоже обладают электрическим зарядом и могут, например, расти и расщепляться на два «штопора», каждый из которых представляет собой копию исходного. Мы можем при желании назвать этот процесс процессом воспроизводства. К тому же некоторые «штопоры» устойчивее других, и это приводит в некотором смысле к «выживанию сильнейшего» – в чем‐то это похоже на естественный отбор.
Таким образом, мы можем сказать, что самоорганизующиеся пылевые зерна в плазменной среде демонстрируют некоторые черты поведения, которое мы привыкли считать свойственными в первую очередь живыми системам. К тому же они удовлетворяют нашему термодинамическому определению жизни, так как поддержание высокой температуры плазмы требует энергии, а «штопоры» явно далеки от равновесия. С другой стороны, мы должны подчеркнуть, что пока все эти особенности поведения частиц существуют только в рамках компьютерной модели и не были пока ни воспроизведены в лаборатории, ни обнаружены в природе. Такую форму жизни, может быть, и можно себе представить теоретически, но прежде, чем задаваться вопросом, можно ли подобное пылевое облако считать живым, нам не помешало бы увидеть какие‐то реальные проявления его особенностей.
По правде говоря, когда физики – такие как группа Цытовича – пытаются построить сложную немолекулярную систему, они обычно обращаются к электричеству и магнетизму. Как мы уже говорили в главе 2, эти явления управляются комплексом законов, известных как уравнения Максвелла. Та часть этих законов, которая имеет отношение к интересующим нас вопросам, говорит нам, что:
• электрические токи (т. е. движущиеся электрические заряды) создают магнитные поля и
• переменные магнитные поля производят электрические токи.
Второе из этих правил объясняет, например, возникновение индуцированных электрических токов, о которых мы говорили в главе 13.
Электрические токи, вроде тех, что бегут по медным проводам у вас дома, состоят из электронов. Когда электроны движутся, они сталкиваются с тяжелыми атомами меди и отдают им некоторую часть своей энергии. Из‐за этого атомы начинают двигаться немного быстрее. При этом выделяется тепло, которое рассеивается в окружающей провода среде: провод обладает электрическим сопротивлением. Если мы не будем постоянно добавлять энергию, компенсируя потерянное тепло, ток перестанет течь. А когда это произойдет, порождаемое током магнитное поле (см. первое правило, упомянутое выше) тоже исчезнет.