На соосном вертолете вся свободная мощность силовой установки используется для привода несущих винтов, то есть для образования подъемкой силы. При этом реактивные моменты взаимно уравновешены. Следовательно, на компенсацию реактивных моментов прямых затрат мощности нет. Кроме того, на режиме висения соосные винты оказывают друг на друга положительное влияние, что также приводит к экономии мощности. Это обстоятельство иллюстрируется на рис. 1, где представлена схема воздушной струи, идущей от верхнего и нижнего винтов вертолета, находящегося на режиме висения. Поскольку струя от верхнего винта сужается в плоскости нижнего винта на 15-20%, то нижний винт имеет возможность осуществлять дополнительный подсос воздуха. Это в целом увеличивает сечение струи и снижает затраты мощности на создание подъемной силы. Кроме того, благодаря противоположному направлению вращения винтов на соосной несущей системе существенно уменьшаются затраты энергии на закручивание струи, что также приводит к снижению непроизводительных потерь мощности.
Результаты летных испытаний и другие экспериментальные материалы свидетельствуют, что коэффициент полезного действия соосных несущих винтов в среднем в 1,06-1,1 раза (на 6-10%) выше, чем одиночных, что видно на рис.1. Учитывая экономию мощности, идущей на компенсацию реактивного момента (10-12%), получаем, что в целом коэффициент полезного действия соосных вертолетов на 16-22% выше, чем одновинтовых. Перечисленные энергетические особенности обеспечивают соосной схеме существенные преимущества в потолке висения и в вертикальной скороподъемности.
На первый взгляд кажется, что за счет наличия двухвинтовой колонки соосные вертолеты должны иметь большее лобовое сопротивление, чем одновинтовые летательные ааппараты. Однако при летных испытаниях это преимущество одновинтовых вертолетов в потребной мощности не проявилось, что можно объяснить следующими факторами:
– благоприятным взаимным влиянием соосных несущих винтов в поступательном движении (эффект «бипланной коробки», обеспечивающий заметную экономию части располагаемой мощности силовой установки, которая идет на создание подъемной силы и эквивалентной потребной индуктивной мощности);
– дополнительными затратами мощности на привод рулевого винта на одновинтовых вертолетах;
– дополнительным сопротивлением рулевого винта одновинтового вертолета, особенно с учетом интерференции рулевого винта и хвостовой балки вертолета;
– дополнительным вредным сопротивлением фюзеляжа одновинтового вертолета в полете со скольжением, так как летчику предпочтительнее пилотировать вертолет без крена;
– рядом мер, существенно уменьшающих на соосном вертолете лобовое сопротивление (например, на Ка-50 – убирающееся в полете шасси).
Соосная конструкция позволяет уменьшить габариты и массу вертолета, что дает ему ряд преимуществ.
Для сравнительной оценки габаритномассовых характеристик соосных и одновинтовых вертолетов с рулевым винтом целесообразно рассмотреть два случая: первый, когда соосный и одновинтовой вертолеты имеют одну и ту же полетную массу и одинаковую располагаемую мощность силовой установки, и второй, когда соосный и одновинтовой вертолеты имеют одинаковые диаметры винтов.
В первом случает использование соосной несущей системы позволяет уменьшить габаритные размеры вертолета на 35-40% по сравнению с одновинтовым. Во втором случае меньшее аэродинамическое качество и дополнительные потери мощности на привод рулевого винта у одновинтового вертолета обусловливают меньшее значение полетной массы. Из-за наличия рулевого винта габаритные размеры одновинтового вертолета на 20% больше соосного.
Компактность планера соосного вертолета и сосредоточение тяжелых агрегатов вблизи центра масс приводят к заметному уменьшению моментов инерции относительно вертикальной и поперечной осей (рис. 2), что играет важную роль в обеспечении высоких характеристик управляемости и маневренности.
Важнейшей особенностью соосного вертолета, существенно улучшающей характеристики устойчивости и управляемости, является его аэродинамическая симметрия. В процессе развития и становления авиастроения конструкторы неоднократно обращались к аэродинамически симметричным схемам. Аэродинамическая симметрия летательного аппарата обеспечивает целый ряд важных пилотажных свойств, и главное, простоту управления. Весьма наглядным в этом плане является пример развития самолетостроения: самолеты проектировались и строились только симметричные.