Люди, оказывается, не очень хорошо владеют байесовским выводом, по крайней мере в устных рассуждениях. Проблема в том, что мы склонны пренебрегать априорной вероятностью причины. Если анализ показал наличие ВИЧ и этот тест дает только один процент ложных положительных результатов, стоит ли паниковать? На первый взгляд может показаться, что, увы, шанс наличия СПИДа — 99 процентов. Но давайте сохраним хладнокровие и последовательно применим теорему Байеса:
Теорема Байеса полезна, потому что обычно известна вероятность следствий при данных причинах, а узнать хотим вероятность причин при данных следствиях. Например, мы знаем процент пациентов с гриппом, у которых повышена температура, но на самом деле нам нужно определить вероятность, что пациент с температурой болен гриппом. Теорема Байеса позволяет нам перейти от одного к другому. Ее значимость, однако, этим далеко не ограничивается. Для байесовцев эта невинно выглядящая формула — настоящее
Теорема Байеса как основа статистики и машинного обучения страдает не только от вычислительной сложности, но и от крайней противоречивости. Вы можете удивиться: разве она не прямое следствие идеи условной вероятности, как мы видели на примере гриппа? Действительно, с формулой как таковой ни у кого проблем не возникает. Противоречие заключается в том, как именно байесовцы получают вероятности, которые в нее включены, и что эти вероятности означают. Для большинства статистиков единственный допустимый способ оценки вероятностей — вычисление частоты соответствующего события. Например, вероятность гриппа равна 0,2, потому что им болело 20 из 100 обследованных пациентов. Это «частотная» интерпретация вероятности, и она дала название господствующему учению в статистике. Но обратите внимание, что в принципе безразличия Лапласа и в примере с восходом солнца мы просто высасываем вероятность из пальца. Чем оправдано априорное предположение, что вероятность восхода солнца равна одной второй, двум третьим или еще какой-то величине? На это байесовцы отвечают, что вероятность — это не частота, а субъективная степень убежденности, поэтому вам решать, какая она будет, а байесовский вывод просто позволяет обновлять априорные убеждения после появления новых доказательств, чтобы получать апостериорные убеждения (это называется «провернуть ручку Байеса»). Поклонники теоремы Байеса верят в эту идею с почти религиозным рвением и 200 лет выдерживают нападки и возражения. С появлением на сцене достаточно мощных компьютеров и больших наборов данных байесовский вывод начал брать верх.
Все модели неверны, но некоторые полезны
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии