Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Разум, которому в каждый определенный момент были бы известны все силы, приводящие природу в движение, и положение всех тел, из которых она состоит, будь он также достаточно обширен, чтобы подвергнуть эти данные анализу, смог бы объять единым законом движение величайших тел Вселенной и мельчайшего атома; для такого разума ничего не было бы неясного и будущее существовало бы в его глазах точно так же, как прошлое.

Это забавно, поскольку Лаплас был отцом теории вероятностей, которая, как он полагал, представляла собой просто здравый смысл, сведенный к вычислениям. В сердце его исследований вероятности лежала озабоченность вопросом Юма. Откуда, например, мы знаем, что завтра взойдет солнце? Каждый день, вплоть до сегодняшнего, это происходило, но ведь нет никаких гарантий, что так будет и впредь. Ответ Лапласа состоит из двух частей. Первая — то, что мы теперь называем принципом безразличия или принципом недостаточного основания. Однажды — скажем, в начале времен, которое для Лапласа было приблизительно 5 тысяч лет назад, — мы просыпаемся, прекрасно проводим день, а вечером видим, что солнце заходит. Вернется ли оно? Мы никогда не видели восхода, и у нас нет причин полагать, что оно взойдет или не взойдет. Таким образом мы должны рассмотреть два одинаково вероятных сценария и сказать, что солнце снова взойдет с вероятностью 1⁄2. Но, продолжал Лаплас, если прошлое хоть как-то указывает на будущее, каждый день, когда солнце восходит, должен укреплять нашу уверенность, что так будет происходить и дальше. Спустя пять тысячелетий вероятность, что солнце завтра снова взойдет, должна быть очень близка единице, но не равняться ей, потому что полной уверенности никогда не будет. Из этого мысленного эксперимента Лаплас вывел свое так называемое правило следования, согласно которому вероятность, что солнце снова взойдет после n восходов, равна (n + 1) / (n + 2). Если n = 0, то это просто 1⁄2, а когда n увеличивается, растет и вероятность, стремясь к единице, когда n стремится к бесконечности.

Это правило вытекает из более общего принципа. Представьте, что вы проснулись посреди ночи на чужой планете. Хотя над вами только звездное небо, у вас есть причины полагать, что солнце в какой-то момент взойдет, поскольку большинство планет вращаются вокруг своей оси и вокруг звезды. Поэтому оценка соответствующей вероятности должна быть больше 1⁄2 (скажем, 2⁄3). Это называется априорной вероятностью восхода солнца, поскольку она предшествует любым доказательствам: вы не исходите из подсчета восходов на этой планете в прошлом, потому что вас там не было и вы их не видели. Априорная вероятность скорее отражает наши убеждения по поводу того, что может произойти, основанные на общих знаниях о Вселенной. Но вот звезды начинают бледнеть, и уверенность, что солнце на этой планете действительно восходит, начинает расти, подкрепляемая земным опытом. Ваша уверенность теперь — это апостериорная вероятность, поскольку она возникает после того, как вы увидели некие доказательства. Небо светлеет, и апостериорная вероятность подскакивает еще раз. Наконец над горизонтом показывается краешек яркого диска, и солнечный луч «ловит башню гордую султана… в огненный силок», как в «Рубаи» Омара Хайяма. Если вы не страдаете галлюцинациями, то можете быть уверены, что солнце взойдет.

Перейти на страницу:

Похожие книги