Классическая формулировка Юмом проблемы индукции появляется в первом томе «Трактата о человеческой природе» (1739). Дэвид Уолперт выводит свою теорему «бесплатных обедов не бывает» для индукции в статье The lack of a priori distinctions between learning algorithms* (Neural Computation, 1996). В статье Toward knowledge-rich data mining* (Data Mining and Knowledge Discovery, 2007) я обсуждаю важность априорного знания в машинном обучении, а в The role of Occam’s razor in knowledge discovery* (Data Mining and Knowledge Discovery, 1999) — неправильные интерпретации бритвы Оккама. Переобучение — одна из главных тем уже упоминавшейся книги The Signal and the Noise Нейта Сильвера, который считает ее «самой важной научной проблемой, о которой вы никогда не слышали». В статье Why most published research findings are false* Джона Иоаннидиса (PLoS Medicine, 2005) обсуждается проблема ошибочного принятия случайных научных результатов за истинные. Йоав Беньямини и Йосеф Хохберг предлагают способ борьбы с ней в статье Controlling the false discovery rate: A practical and powerful approach to multiple testing* (Journal of the Royal Statistical Society, Series B, 1995). Дилемма смещения–дисперсии анализируется в статье Neural networks and the bias/variance dilemma Стюарта Джемана, Эли Биненстока и Рене Дурсата (Neural Computation, 1992). В статье Machine learning as an experimental science Пэта Лэнгли (Machine Learning, 1988) обсуждается роль эксперимента в машинном обучении.
Уильям Стэнли Джевонс впервые предложил считать индукцию противоположностью дедукции в книге The Principles of Science (1874). Статья Machine learning of first-order predicates by inverting resolution* Стива Магглтона и Рэя Бантина (Proceedings of the Fifth International Conference on Machine Learning, 1988) положила начало применению обратной дедукции в машинном обучении. Введением в область индуктивного логического программирования может служить книга Relational Data Mining* под редакцией Сашо Джероского и Нады Лаврач (Springer, 2001), В ней также рассматривается обратная дедукция. Статья The CN2 Induction Algorithm* Питера Кларка и Тима Ниблетта (Machine Learning, 1989) суммирует ряд важнейших алгоритмов выведения правил в стиле Михальского. Подход к выведению правил, применяемый в торговых сетях, описан в статье Fast algorithms for mining association rules* Ракеша Агарвала и Рамакришнана Шриканта (Proceedings of the Twentieth International Conference on Very Large Databases, 1994). Пример выведения правил для прогнозирования рака можно найти в статье Carcinogenesis predictions using inductive logic programming Ашвина Шринивасана, Росса Кинга, Стивена Магглтона и Майкла Стернберга (Intelligent Data Analysis in Medicine and Pharmacology, 1997).
Два ведущих обучающих алгоритма, основанных на деревьях решений, представлены в книгах C4.5: Programs for Machine Learning Джона Росса Куинлана (Morgan Kaufmann, 1992) и Classification and Regression Trees* Лео Бреймана, Джерома Фридмана, Ричарда Олшена и Чарльза Стоуна (Chapman and Hall, 1984). В статье Real-time human pose recognition in parts from single depth images* (Communications of the ACM, 2013) Джейми Шоттон и соавторы объясняют принципы использования деревьев решений для отслеживания движений игроков в системе Kinect компании Microsoft. Статья Competing approaches to predicting Supreme Court decision making Эндрю Мартина и соавторов (Perspectives on Politics, 2004) рассказывает, как деревья решений победили экспертов-юристов в прогнозировании результатов голосования в Верховном суде США. Там же приведено дерево решений для судьи Сандры Дэй О’Коннор.
Аллен Ньюэлл и Герберт Саймон сформулировали гипотезу, что весь интеллект сводится к манипулированию символами, в статье Computer science as empirical enquiry: Symbols and search (Communications of the ACM, 1976). Дэвид Марр предложил три уровня обработки информации в книге Vision* (Freeman, 1982)[135]. В книге Machine Learning: An Artificial Intelligence Approach* под редакцией Рышарда Михальского, Джейми Карбонелла и Тома Митчелла (Tioga, 1983) описан ранний период символистских исследований в машинном обучении. Статья Connectionist AI, symbolic AI, and the brain* Пола Смоленского (Artificial Intelligence Review, 1987) представляет коннекционистский подход к символистским моделям.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии