Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Если вы хотите узнать больше о машинном обучении в целом, неплохо будет начать с онлайн-курсов. Неудивительно, что ближе всего к содержанию этой книги курс, который веду я сам (www.coursera.org/course/machlearning). Еще два варианта — курсы Эндрю Ына (www.coursera.org/course/ml) и Ясера Абу-Мостафы (work.caltech.edu/telecourse.html). Следующий шаг — взяться за учебники. Один из самых доступных и близких к моей книге — Machine Learning* Тома Митчелла (McGraw-Hill, 1997). Более современные, но более математические — Machine Learning: A Probabilistic Perspective* Кевина Мерфи (MIT Press, 2012), Pattern Recognition and Machine Learning* Криса Бишопа (Springer, 2006) и An Introduction to Statistical Learning with Applications in R* Гарета Джеймса, Даниэлы Виттен, Тревора Хасти и Роба Тибширани (Springer, 2013). Моя статья A few useful things to know about machine learning (Communications of the ACM, 2012) частично суммирует «общеизвестные» истины машинного обучения, которые учебники часто обходят стороной как банальные. Она стала одной из отправных точек этой книги. Если вы умеете программировать и вам не терпится взяться за дело, можете начать с многочисленных открытых пакетов, например Weka (www.cs.waikato.ac.nz/ml/weka). Важнейшие журналы по машинному обучению — Machine Learning и Journal of Machine Learning Research. Ведущие конференции, ежегодно публикующие свои материалы, — International Conference on Machine Learning, Conference on Neural Information Processing Systems и International Conference on Knowledge Discovery and Data Mining. Множество лекций по машинному обучению вы найдете на сайте videolectures.net. На сайте www.KDnuggets.com также представлено много ресурсов по машинному обучению. Там можно подписаться на рассылку и быть в курсе последних разработок.

Пролог

Примеры влияния машинного обучения на повседневную жизнь приведены в статье Джорджа Джона Behind-the-scenes data mining (SIGKDD Explorations, 1999): она вдохновила меня описать «один день из жизни» в прологе. Много применений машинного обучения рассмотрено в книге Эрика Зигеля Predictive Analytics (Wiley, 2013)[120]. Термин «большие данные» стал популярным после вышедшего в 2011 году отчета McKinsey Global Institute Big Data: The Next Frontier for Innovation, Competition, and Productivity. Много вопросов, которые поднимают большие данные, обсуждается в книге Виктора Майер-Шенбергера и Кеннет Кукьера Big Data: A Revolution That Will Change How We Live, Work, and Think, by Viktor Mayer-Schönberger and Kenneth Cukier (Houghton Mifflin Harcourt, 2013)[121]. Учебник, по которому я сам учился искусственному интеллекту, — это Artificial Intelligence Элен Рич (McGraw-Hill, 1983)*. Более современный вариант — Artificial Intelligence: A Modern Approach Стюарта Расселла и Питера Норвига (третье издание, Prentice Hall, 2010)[122]. В книге Нильса Нильссона The Quest for Artificial Intelligence (Cambridge University Press, 2010) рассказана история создания искусственного интеллекта начиная с самого начала.

Глава 1

В книге Nine Algorithms That Changed the Future Джона Маккормика (Princeton University Press, 2012)[123] описан ряд важнейших алгоритмов, применяемых в информатике. В ней есть и глава о машинном обучении. Algorithms Санджоя Дасгупты, Христоса Пападимитриу и Умеша Вазирани (McGraw-Hill, 2008)[124] — сжатый вводный учебник по предмету. Джинни Хиллис в книге The Pattern on the Stone (Basic Books, 1998) объясняет, как работают компьютеры. Уолтер Айзексон рассказывает живую историю информатики в книге The Innovators (Simon & Schuster, 2014)[125].

В статье Spreadsheet data manipulation using examples* Сумита Гульвани, Уильяма Харриса и Ришабха Сингха (Communications of the ACM, 2012) показано, как компьютеры могут программировать сами себя, наблюдая за пользователями. Книга Competing on Analytics Тома Дэвенпорта и Джоанн Харрис (HBS Press, 2007)[126] — хорошее введение в применение прогнозной аналитики в бизнесе. Работа In the Plex Стивена Леви (Simon & Schuster, 2011) дает представление о технологиях Google. Карл Шапиро и Хэл Вариан объясняют сетевой эффект в книге Information Rules: A Strategic Guide to the Network Economy (HBS Press, 1999). Феномен длинного хвоста анализирует Крис Андерсон в книге The Long Tail (Hyperion, 2006)[127].

Перейти на страницу:

Похожие книги