Читаем В звёздных лабиринтах: Ориентирование по небу полностью

Что касается первого фактора, то он, как нетрудно сообразить, приводит лишь к параллельному сдвигу отвесной линии и поэтому на величину географической широты данной точки земной поверхности практически никакого влияния не оказывает.

Второй фактор вызывает отклонение отвесной линии от направления радиуса, соответствующего данной точке на некоторый угол, зависящий от направления силы тяжести. Поэтому, строго говоря, высота полюса мира над горизонтом будет несколько отличаться от географической широты данной точки. Чтобы это отклонение учесть, надо располагать данными об аномалиях направления силы тяжести. Однако величина соответствующей поправки, как правило, незначительна и её можно не принимать во внимание.

Что касается практического определения широты, то в северном полушарии Земли её можно узнать, измерив высоту Полярной звезды. При этом, однако, не следует забывать, что Полярная звезда отстоит от северного полюса мира примерно на 1°. Поэтому для точного измерения надо выбирать момент верхней или нижней кульминации Полярной звезды, т.е. момент, когда эта звезда, как и полюс мира, находится на линии небесного меридиана. При этом условии искомую широту мы получим в первом случае, отняв от полученного результата 1°, а во втором — прибавив к нему 1°.

Однако измерить широту данного места можно не только по полюсам мира, но и путем наблюдения любой звезды.

Ряс. 13. Определение широты по кульминации светил.

Рассмотрим сечение небесной сферы, при котором плоскость небесного меридиана совпадает с плоскостью чертежа (рис. 13). Здесь ОР — ось мира, NS — проекция плоскости горизонта, Q1Q2 — проекция плоскости небесного экватора, угол φ — высота полюса мира над горизонтом, равная широте данного места, угол ν — высота точки пересечения Q1 плоскости небесного экватора с небесным меридианом (иными словами, угол наклона плоскости небесного экватора к плоскости горизонта).

Из чертежа видно, что

φ + ν = 90°

(1)

Следовательно,

ν = 90° - φ

(2)

а угол Q1OZ, как дополняющий ν до 90°, равен φ.

Отсюда вытекает очевидный способ определения широты, т.е. угла φ по наблюдениям кульминаций звёзд. В самом деле, пусть какая-либо звезда кульминирует в точке K. Из чертежа видно, что угол ν равен разности между высотой избранной звезды h в момент кульминации и её склонением δ.

Но согласно (2)

90° - φ = h - δ

откуда

φ = 90° + δ - h

(3)

Высота звезды в момент кульминации измеряется с помощью угломерного инструмента, а её склонение определяется по звёздной карте или берётся из астрономического каталога.

Формула (3) пригодна для тех случаев, когда звезда кульминирует к югу от точки зенита. Если же верхняя кульминация имеет место к северу от точки зенита, то из чертежа находим

φ = h - (90° - δ1)

или

φ = δ1 + h - 90°

(4)

но

h - 90° = -(90° - h)

откуда

φ = δ1 - z1

(5)

где z — зенитное расстояние звезды в момент кульминации.

Для практических измерений лучше пользоваться формулой (4).

Формула (3) пригодна и в том случае, когда наблюдения ведутся в дневное время и в качестве кульминирующего светила используется центр Солнца. Склонение Солнца для данного дня года берётся из соответствующих астрономических таблиц.

Есть и ещё один удобный способ определения широты по наблюдениям звёзд, охотно применяемый в мореплавании.

Если звезда в данный момент находится в точке зенита, то, как видно из рисунка, её склонение (∠Q1OZ) равно широте (∠PON), поскольку у этих углов стороны взаимно перпендикулярны. То же самое можно непосредственно получить из формулы (5) при условии z = 0:

δ = φ.

(6)

В этом случае определение широты сводится к выяснению с помощью каталога или звёздной карты склонения звезды, которая в данный момент находится в точке зенита.

В современных морских астрономических ежегодниках приводятся прямые восхождения (α) для 159 навигационных звёзд. Однако примерно около ста из них — это сравнительно слабые звёзды, и практически для астронавигационных наблюдений используется около 60 звёзд. Это объясняется тем, что с наступлением ночной темноты в открытом море становится неразличимой линия горизонта, от которой требуется измерять высоты небесных светил. Для наблюдений по этой причине необходимы звёзды, которые видны в сумерки, когда линия горизонта ещё достаточно хорошо видна.

Правда, уже в годы второй мировой войны на судах появились секстанты с искусственным горизонтом, в дальнейшем непрерывно совершенствовавшиеся. Наиболее надёжными являются гироскопические системы. Однако существующие конструкции весьма сложны и дороги и поэтому применяются только на самых крупных судах и в подводном флоте. Создание простых, дешёвых и надёжных систем искусственного горизонта — одна из главных задач современной мореходной астрономии.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука