70 socklen_t len;
71 for (;;) {
72 len = clilen;
73 n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);
74 printf("child %d, datagram from %s", getpid(),
75 Sock_ntop(pcliaddr, len));
76 printf(", to %s\n", Sock_ntop(myaddr, clilen));
77 Sendto(sockfd, mesg, n, 0, pcliaddr, len);
78 }
79 }
65-66
Четвертым аргументом этой функции является IP-адрес, связанный с сокетом. Этот сокет должен получать только дейтаграммы, предназначенные для данного IP-адреса. Если IP-адрес является универсальным, сокет должен получать только те дейтаграммы, которые не подходят ни для какого другого сокета, связанного с тем же портом.
71-78
Дейтаграмма читается с помощью функции recvfrom
и отправляется клиенту обратно с помощью функции sendto
. Эта функция также выводит IP-адрес клиента и IP-адрес, который был связан с сокетом.
Запустим эту программу на нашем узле solaris
после установки псевдонима для интерфейса hme0
Ethernet. Адрес псевдонима: узел 200 в сети 10.0.0/24.
solaris % udpserv03
bound 127.0.0.1:9877
bound 10.0.0.200:9877
bound 10.0.0.255:9877
bound 192.168.1.20:9877
bound 192.168.1.255:9877
bound 0.0.0.0.9877
При помощи утилиты netstat
мы можем проверить, что все сокеты связаны с указанными IP-адресами и портом:
solaris % netstat -na | grep 9877
127.0.0.1.9877 Idle
10.0.0.200.9877 Idle
*.9877 Idle
192.129.100.100.9877 Idle
*.9877 Idle
*.9877 Idle
Следует отметить, что для простоты мы создаем по одному дочернему процессу на сокет, хотя возможны другие варианты. Например, чтобы ограничить число процессов, программа может управлять всеми дескрипторами сама, используя функцию select
и не вызывая функцию fork
. Проблема в данном случае будет заключаться в усложнении кода. Хотя использовать функцию select
для всех дескрипторов несложно, нам придется осуществить некоторое сопоставление каждого дескриптора связанному с ним IP-адресу (вероятно, с помощью массива структур), чтобы иметь возможность вывести IP-адрес получателя после того, как на определенном сокете получена дейтаграмма. Часто бывает проще использовать отдельный процесс или поток для каждой операции или дескриптора вместо мультиплексирования множества различных операций или дескрипторов одним процессом.
22.7. Параллельные серверы UDP
Большинство серверов UDP являются последовательными (iterative): сервер ждет запрос клиента, считывает запрос, обрабатывает его, отправляет обратно ответ и затем ждет следующий клиентский запрос. Но когда обработка запроса клиента занимает длительное время, желательно так или иначе совместить во времени обработку различных запросов.
Определение «длительное время» означает, что другой клиент вынужден ждать в течение некоторого заметного для него промежутка времени, пока обслуживается текущий клиент. Например, если два клиентских запроса приходят в течение 10 мс и предоставление сервиса каждому клиенту занимает в среднем 5 с, то второй клиент будет вынужден ждать ответа около 10 с вместо 5 с (если бы запрос был принят в обработку сразу же по прибытии).
В случае TCP проблема решается просто — требуется лишь породить дочерний процесс с помощью функции fork
(или создать новый поток, что мы увидим в главе 23) и дать возможность дочернему процессу выполнять обработку нового клиента. При использовании TCP ситуация существенно упрощается за счет того, что каждое клиентское соединение уникально: пара сокетов TCP уникальна для каждого соединения. Но в случае с UDP мы вынуждены рассматривать два различных типа серверов.