Читаем Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики полностью

Глава 8. Что такое хороший профессионал в области аналитики? Навыки в области математики, статистики и программирования – необходимые, но недостаточные характеристики хорошего профессионального аналитика. Хороший аналитик должен иметь такие качества, как обязательность, творчество, деловая смекалка, навыки проведения презентации и интуиция. В этой главе описано, почему каждая из этих черт имеет большое значение для профессионального аналитика и почему ими не стоит пренебрегать.

Глава 9. Что такое хорошая аналитическая команда? Как организации следует создавать и поддерживать команды аналитиков, чтобы обеспечить оптимальный эффект? Каким образом команды вписываются в организацию? Как они должны работать? Кто должен отвечать за создание передовой аналитики? Здесь затронуты часто встречающиеся проблемы и изложены принципы, которые необходимо иметь в виду при создании аналитической команды.

Часть IV. Объединение пройденного: аналитическая культура

В четвертой части изложены хорошо известные базовые принципы, которым должна следовать организация, чтобы успешно внедрять инновации, используя передовые средства анализа и большие данные. Поскольку это фундамент многих дисциплин, внимание сосредоточено на том, какое отношение данные принципы имеют к передовой аналитике в современной корпоративной среде. Описываемые концепции, вероятно, знакомы читателям в отличие от способов их применения к области передовой аналитики и больших данных.

Глава 10. Создание условий для внедрения инноваций в сфере аналитики. Глава начинается с обзора некоторых принципов, лежащих в основе успешного внедрения инноваций. Далее объясняется, как они применяются в мире больших данных и передовой аналитики, с помощью концепции центра аналитических инноваций. Цель состоит в том, чтобы показать читателям, как можно обеспечить внедрение аналитических инноваций и укрощение больших данных в своих организациях.

Глава 11. Создание культуры инноваций и открытий. Глава посвящена созданию культуры инноваций и открытий. Она написана легко и непринужденно и дает пищу для размышлений о том, что требуется для создания культуры, способной к инновационному анализу. Изложенные в главе принципы хорошо известны. Тем не менее их стоит еще раз проанализировать, а затем подумать о том, как их применить к большим данным и передовой аналитике.

<p>Часть I</p><p>Появление больших данных</p><p>Глава 1</p><p>Что такое «большие данные» и каково их значение?</p>

Пожалуй, ничто так сильно не повлияет на сферу передовой аналитики в ближайшие годы, как постоянное появление новых и мощных источников данных. Если говорить об анализе потребительского рынка, время, когда можно было полагаться исключительно на демографию и историю покупок, осталось в прошлом. Практически в каждой отрасли существует по крайней мере один совершенно новый источник данных, который в ближайшее время появится в интернете, если его еще там нет. Одни источники данных широко используются в различных отраслях промышленности, другие – в очень небольшом количестве отраслей или ниш. Многие из этих источников данных попадают под определение, которое вызывает в последнее время много шума: «большие данные».

Большие данные появляются везде, и их умелое применение окажется конкурентным преимуществом. Игнорирование больших данных опасно для организации, поскольку так можно отстать от конкурентов. Чтобы оставаться конкурентоспособными, крайне важно, чтобы организации активно анализировали эти новые источники данных и воспользовались содержащимися в них ценными сведениями. Профессиональным аналитикам предстоит много работы! Нелегко будет объединить большие данные со всеми остальными данными, которые в течение многих лет применялись для анализа.

В начале главы объясняется, что такое «большие данные». Далее приведены соображения о том, чем они могут быть полезны организации.

<p>Что такое «большие данные»?</p>
Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление проектами. Фундаментальный курс
Управление проектами. Фундаментальный курс

В книге подробно и систематически излагаются фундаментальные положения, основные методы и инструменты управления проектами. Рассматриваются вопросы управления программами и портфелями проектов, создания систем управления проектами в компании. Подробно представлены функциональные области управления проектами – управление содержанием, сроками, качеством, стоимостью, рисками, коммуникациями, человеческими ресурсами, конфликтами, знаниями проекта. Материалы книги опираются на требования международных стандартов в сфере управления проектами.Для студентов бакалавриата и магистратуры, слушателей программ системы дополнительного образования, изучающих управление проектами, аспирантов, исследователей, а также специалистов-практиков, вовлеченных в процессы управления проектами, программами и портфелями проектов в организациях.

Коллектив авторов

Экономика