• Глава 1 включает в себя обзор концепции больших данных и объясняет, что «размер не всегда имеет значение». На протяжении всей книги Фрэнкс отмечает, что б
• Обзор источников больших данных в главе 3 – интересный, полезный и необыкновенно подробный каталог. Подход к веб-данным и веб-аналитике в главе 2 может заинтересовать людей и организации, которые стремятся понять поведение потребителей, совершающих покупки через интернет. Этот подход выходит далеко за рамки обычной веб-аналитики, ориентированной на отчетность.
• Глава 4, посвященная «эволюции масштабируемости аналитических систем», представит вам технологические платформы для больших данных и аналитики с такой точки зрения, которую вы больше нигде не найдете. В ней автор также описывает такие современные технологии, как MapReduce, и разумно утверждает, что анализ больших данных потребует использования комбинации сред.
• Эта книга содержит ультрасовременные сведения о том, как создавать аналитические среды и управлять ими, – эти сведения вы также нигде больше не найдете. Если вы хотите познакомиться с новейшими размышлениями на тему «аналитических песочниц» и «аналитических наборов данных предприятия» (это была новая для меня тема, однако теперь я знаю, чт
• В главе 6 рассматриваются доступные сегодня типы аналитического программного обеспечения, в том числе программной среды R с открытым исходным кодом. Обычно очень трудно найти здравое рассуждение о сильных и слабых сторонах различных аналитических сред, однако здесь оно представлено. И наконец, описание методов анализа будет понятно даже далеким от техники людям.
• Третья часть книги сосредоточена на том, как управлять человеческим и организационным аспектами аналитики. В этом автор также опирается на здравый смысл. Мне, например, особенно понравился акцент на фреймовом представлении проблем и решений в главе 7. Слишком многие аналитики принимаются за анализ, не задумываясь о более важных вопросах, связанных с постановкой проблемы.
• Недавно меня спросили, описывал ли кто-нибудь, кроме меня, аналитическую культуру. Я сказал, что не знаю, однако это было до того, как я прочитал четвертую часть книги Фрэнкса. Она связывает аналитическую и инновационную культуру так, как никто прежде этого не делал.
Хотя книга содержит технические сведения, она доступна для широкой аудитории, в том числе для людей с ограниченными техническими познаниями. Совет Фрэнкса по поводу инструментов для визуализации данных касается всей книги: «Чем проще, тем лучше. Прибегайте к усложнению только в случае крайней необходимости».
Если ваша организация собирается заняться аналитикой – а так и должно быть! – вам придется столкнуться со многими аспектами, затронутыми в этой книге. Даже если вы не специалист в технических вопросах, необходимо ознакомиться с некоторыми темами, связанными с обеспечением аналитических возможностей компании. Если же вы как раз являетесь техническим специалистом, то многое узнаете о человеческом аспекте аналитики. Если вы читаете это предисловие в книжном магазине или просматриваете описание книги на сайте, смело покупайте ее. Если вы ее уже купили, немедленно приступайте к чтению!
Введение
Вы получили электронное письмо: вам предлагают приобрести персонализированную компьютерную систему. Кажется, магазин прочитал ваши мысли, поскольку всего несколько часов назад вы просматривали информацию о компьютерах на его сайте…
Вы отправились в магазин за компьютером, и по пути поступает предложение купить со скидкой кофе в кофейне, мимо которой вы проезжаете: можете получить 10 %-ную скидку, если заедете в течение ближайших 20 минут…
Пока пьете кофе, приходит извинение от производителя товара, на качество которого вы пожаловались вчера на своей странице в Facebook, а также на сайте компании…
Наконец, возвращаетесь домой, а вас ждет предложение приобрести специальную броню для вашей любимой онлайн-видеоигры, которая поможет пройти некоторые места, на которых вы застряли…
Звучит неправдоподобно? Думаете, это картины далекого будущего? Нет, эти сценарии возможны уже сегодня! Большие данные. Передовая аналитика. Аналитика больших данных. Кажется, что сегодня уже не обойтись без этих понятий. Люди обсуждают, пишут и продвигают идеи больших данных и передовой аналитики. Теперь к их суждениям можно добавить и эту книгу.