Читаем Учебное пособие по курсу «Нейроинформатика» полностью

<p id="AutBody_15top24">Обучение</p>

Программа Hopfield.

При вычислении синаптической карты в данной программе предусмотрено использование одного из двух заложенных алгоритмов. Выбор алгоритма производится в подменю "Параметры" главного меню. Там же описана процедура предварительной обработки обучающего множества в случае применения алгоритма "Проекционный Хопфилд". В этом разделе описана общая для обоих алгоритмов процедура вычисления элемента синаптической карты по векторам обучающего множества. Поскольку мы имеем дело со стонейронной нейронной сетью, исходные данные любого примера можно представить в виде стомерного вектора. Обозначим вектора соответствующие обучающему множеству через A[1],…,A[k], вес l-ого примера — W[l], а ij-ый элемент синаптической карты — X[ij]. Тогда алгоритм вычисления синаптической карты можно представить в виде формулы:

X[ij] = Сумма по l от 1 до k (A[l][i]*A[l][j]*W[l])

Все программы, кроме программыHopfield.

В данной программе реализован «генетический» подход к формированию стратегии обучения. У Вас в руках ряд процедур, с помощью которых Вы можете подобрать стратегию обучения сети. Ниже приведена таблица всех возможных режимов

Использовать MParTanОрганизация обученияВычисление направленияСпособ оцениванияДопустимость
1ДаСредн.АнтиградиентМНКДопустим
2ДаСредн.АнтиградиентРДМДопустим
3ДаСредн.СлучайноеМНКДопустим
4ДаСредн.СлучайноеРДМДопустим
5ДаПозад.АнтиградиентМНКНедопустим
6ДаПозад.АнтиградиентРДМНедопустим
7ДаПозад.СлучайноеМНКНедопустим
8ДаПозад.СлучайноеРДМНедопустим
9ДаЗад. NАнтиградиентМНКДопустим
10ДаЗад. NАнтиградиентРДМДопустим
11ДаЗад. NСлучайноеМНКДопустим
12НетЗад. NСлучайноеРДМДопустим
13НетСредн.АнтиградиентМНКДопустим
14НетСредн.АнтиградиентРДМДопустим
15НетСредн.СлучайноеМНКДопустим
16НетСредн.СлучайноеРДМДопустим
17НетПозад.АнтиградиентМНКДопустим
18НетПозад.АнтиградиентРДМДопустим
19НетПозад.СлучайноеМНКДопустим
20НетПозад.СлучайноеРДМДопустим
21НетЗад. NАнтиградиентМНКДопустим
22НетЗад. NАнтиградиентРДМДопустим
23НетЗад. NСлучайноеМНКДопустим
24НетЗад. NСлучайноеРДМДопустим

Обозначения, использованные в таблице:

Средн. — Обучение по усредненной оценке (градиенту);

Позад. — Позадачное обучение;

Зад. # — Обучение задаче номер;

Случайно — Случайный спуск;

Антиградиент — Градиентный спуск;

МНК — Оценка типа Метода наименьших квадратов;

РДМ — Оценка типа Расстояние до множества.

Задать процедуру обучения Вы можете в меню Параметры, в подменю метода

<p>Тест</p>

В режиме Тест Вы можете проверить навыки нейронной сети. Возможно несколько видов тестирования: Тест обучающего множества, при котором проверяется правильность ответов сети при предъявлении ей примеров из обучающего множества; Тест текущего тестового примера, при котором проверяется решение сетью активного примера в тестовой задаче; Тест тестовой задачи — проверка решения сетью всех примеров тестовой задачи; все программы, кроме программыHopfieldСтатистический тест — проверка сети на устойчивость к искажениям.

Тест обучающего множества

Часто бывает важно знать, какие ответы дает сеть при предъявлении ей примеров из обучающего множества. Это бывает полезно при выявлении «плохих» задач и во многих других случаях. После проведения Теста обучающего множества каждому примеру из обучающего множества ставится в соответствие ответ. Результаты теста можно узнать, просмотрев обучающее множество.

Тест текущего тестового примера

При работе с обученной нейронной сетью часто бывает важно узнать ее ответ на пример, не входящий в обучающее множество. Для этой цели предназначены режимы Тест текущего тестового примера и Тест тестовой задачи. Чтобы проверить реакцию сети на интересующий Вас пример Вы должны ввести этот пример в окне «Тест» и выполнить Тест текущего тестового примера.

Тест тестовой задачи
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное