Косвенный дубль второго рода для сигнала является минимальным множеством входных сигналов, для которых существует сеть
Соотношения между косвенными дублями второго рода и другими видами дублей первого и второго рода задаются теоремами 1, 2 и следующими двумя теоремами.
Теорема 3. Косвенный дубль второго рода всегда является прямым дублем второго рода.
Доказательство данной теоремы полностью аналогично доказательству теоремы 1.
Теорема 4. Полный косвенный дубль второго рода является косвенным дублем первого рода тогда, и только тогда, когда верно соотношение
Доказателство данной теоремы полностью аналогично доказательству теоремы 2.
Последним рассматриваемым в данной работе видом дубля является косвенный супердубль. Косвенным супердублем будем называть минимальное множество входных сигналов, которое позволяет восстановит все входные сигналы. Косвенный супердубль формально описывается следующей формулой:
Очевидно, что косвенный супердубль является полным косвенным дублем второго рода. Также очевидно, что косвенный супердубль встречается гораздо реже, чем наиболее редкий из ранее рассматриваемых косвенный дубль первого рода.
Существует два типа процедуры контрастирования — контрастирование по значимости параметров и не ухудшающее контрастирование. В данном разделе описаны оба типа процедуры контрастирования.
С помощью этой процедуры можно контрастировать, как входные сигналы, так и параметры сети. Далее в данном разделе будем предполагать, что контрастируются параметры сети. При контрастировании входных сигналов процедура остается той же, но вместо показателей значимости параметров сети используются показатели значимости входных сигналов. Обозначим через
Используя введенные обозначения процедуру контрастирования можно записать следующим образом:
1. Вычисляем показатели значимости.
2. Находим минимальный среди показателей значимости —
3. Заменим соответствующий этому показателю значимости параметр
4. Предъявим сети все примеры обучающего множества. Если сеть не допустила ни одной ошибки, то переходим ко второму шагу процедуры.
5. Пытаемся обучить полученную сеть. Если сеть обучилась безошибочному решению задачи, то переходим к первому шагу процедуры, в противном случае переходим к шестому шагу.
6. Восстанавливаем сеть в состояние до последнего выполнения третьего шага. Если в ходе выполнения шагов со второго по пятый был отконтрастирован хотя бы один параметр, (число обучаемых параметров изменилось), то переходим к первому шагу. Если ни один параметр не был отконтрастирован, то получена минимальная сеть.
Возможно использование различных обобщений этой процедуры. Например, контрастировать за один шаг процедуры не один параметр, а заданное пользователем число параметров. Наиболее радикальная процедура состоит в контрастировании половины параметров связей. Если контрастирование половины параметров не удается, то пытаемся контрастировать четверть и т. д. Другие варианты обобщения процедуры контрастирования будут описаны при описании решения задач. Результаты первых работ по контрастированию нейронных сетей с помощью описанной процедуры опубликованы в [47, 303, 304].
Пусть нам дана только обученная нейронная сеть и обучающее множество. Допустим, что вид функции оценки и процедура обучения нейронной сети неизвестны. В этом случае так же возможно контрастирование сети. Предположим, что данная сеть идеально решает задачу. В этом случае возможно контрастирование сети даже при отсутствии обучающей выборки, поскольку ее можно сгенерировать используя сеть для получения ответов. Задача не ухудшающего контрастирования ставится следующим образом: необходимо так провести контрастирование параметров, чтобы выходные сигналы сети при решении всех примеров изменились не более чем на заданную величину. Для решения задача редуцируется на отдельный адаптивный сумматор: необходимо так изменить параметры, чтобы выходной сигнал адаптивного сумматора при решении каждого примера изменился не более чем на заданную величину.