Читаем Учебное пособие по курсу «Нейроинформатика» полностью

Очевидно, что возможны все четыре варианта дублей: прямой первого рода, косвенный первого рода, прямой второго рода и косвенный второго рода. В следующих разделах будут описаны алгоритмы получения дублей всех вышеперечисленных видов.

<p>Прямой дубль первого рода</p>

Для нахождения прямого дубля первого рода требуется найти такое множество сигналов D что существует сеть T({0},D) и S1D=∅. Решение этой задачи очевидно. Удалим из множества входных сигналов те их них, которые вошли в первоначальное минимальное множество входных сигналов S1. Найдем минимальное множествовходных сигналов среди оставшихся. Найденное множество и будет искомым дублем.

Формально описанную выше процедуру можно записать следующей формулой:

D=F({0},{1,…,M}\S1).

Множество повышенной надежности в этом случае можно записать в следующем виде:

Очевидно, что последнюю формулу можно обобщить, исключив из первоначального множества входных сигналов найденное ранее множество повышенной надежности и попытавшись найти минимальное множество среди оставшихся входных сигналов. С другой стороны, для многих нейросетевых задач прямых дублей первого рода не существует. Примером может служить одна из классических тестовых задач — задача о предсказании результатов выборов президента США.

<p>Косвенный дубль первого рода</p>

Для нахождения косвенного дубля первого рода необходимо найти такое множество входных сигналов D что существует сеть T(S1,D) и S1D=∅. Другими словами, среди множества входных сигналов, не включающем начальное минимальное множество, нужно найти такие входные сигналы, по которым можно восстановит значения входных сигналов начального минимального множества. Формально описанную выше процедуру можно записать следующей формулой:

D=F(S1,{1,…,M}\S1).

Множество повышенной надежности в этом случае можно записать в следующем виде:

Эта формула так же допускает обобщение. Однако, следует заметить, что косвенные дубли первого рода встречаются еще реже чем прямые дубли первого рода. Соотношение между косвенным и прямым дублем первого рода описываются следующей теоремой.

Теорема 1. Если множество D является косвенным дублем первого рода, то оно является и прямым дублем первого рода.

Доказательство. Построим нейронную сеть, состоящую из последовательно соединенных сетей T(S1,D) и T({0},S1), как показано на рис. 6. Очевидно, что на выходе первой сети будут получены те сигналы, которые, будучи поданы на вход второй сети, приведут к получению на выходе второй сети правильного ответа. Таким образом сеть, полученная в результате объединения двух сетей T(S1,D) и T({0},S1), является сетью T({0},D). Что и требовалось доказать.

Рис. 6. Сеть для получения ответа из косвенного дубля.

Следствие. Если у множества S1 нет прямого дубля первого рода, то у нее нет и косвенного дубля первого рода

Доказательство. Пусть это не так. Тогда существует косвенный дубль первого рода. Но по теореме 1 он является и прямым дублем первого рода, что противоречит условию теоремы. Полученное противоречие доказывает следствие.

<p>Прямой дубль второго рода</p>

Перенумеруем входные сигналы из множества S1={i1,…,ik}, k=|S1|. Множество сигналов, являющееся прямым дублем второго рода для сигнала можно получить найдя минимальное множество для получения ответа, если из исходного множества входных сигналов исключен сигнал . Таким образом прямые дубли второго рода получаются следующим образом:

Dj=F({0},{1,…,M}\{ij}).

Полный прямой дубль второго рода получается объединением всех дублей для отдельных сигналов

Множество повышенной надежности для прямого дубля второго рода можно записать в следующем виде:

Заметим, что при построении прямого дубля второго рода не требовалось отсутствия в нем всех элементов множества S1, как это было при построении прямого дубля первого рода. Такое снижение требований приводит к тому, что прямые дубли второго рода встречаются чаще, чем прямые дубли первого рода. Более того, прямой дубль первого рода очевидно является прямым дублем второго рода. Более точное соотношение между прямыми дублями первого и второго родов дает следующая теорема.

Теорема 2. Полный прямой дубль второго рода является прямым дублем первого рода тогда, и только тогда, когда

(1)

Доказательство. Построим сеть, состоящую из параллельно работающих сетей, T({0},{1,…,M}\{ij}), за которыми следует элемент, выдающтй на выход среднее арифметическое своих входов. Такая сеть очевидно будет решать задачу, а в силу соотношения (1) она будет сетью T({0},{1,…,M}\{S1}). Таким образом, если соотношение (1) верно, то прямой дубль второго рода является прямым дублем первого рода. Необходимость следует непосредственно из определения прямого дубля первого рода.

<p>Косвенный дубль второго рода</p>
Перейти на страницу:

Похожие книги

Все жанры