Читаем Учебное пособие по курсу «Нейроинформатика» полностью

1. Каждый выходной сигнал нейронной сети интерпретируется как 1, если он больше (a+b)/2, и как 0 в противном случае.

2. Полученная последовательность нулей и единиц интерпретируется как двоичное число.

Двоичный интерпретатор позволяет интерпретировать N выходных сигналов нейронной сети как номер одного из 2N классов.

Порядковый интерпретатор. Порядковый интерпретатор кодирует номер класса подстановкой. Отсортируем вектор выходных сигналов по возрастанию. Вектор, составленный из номеров нейронов последовательно расположенных в отсортированном векторе выходных сигналов, будет подстановкой. Если каждой подстановке приписать номер класса, то такой интерпретатор может закодировать N! классов используя N выходных сигналов.

<p>Уровень уверенности</p>

Часто при решении задач классификации с использованием нейронных сетей недостаточно простого ответа «входной вектор принадлежит K-му классу». Хотелось бы также оценить уровень уверенности в этом ответе. Для различных интерпретаторов вопрос определения уровня уверенности решается по-разному. Однако, необходимо учесть, что от нейронной сети нельзя требовать больше того, чему ее обучили. В этом разделе будет рассмотрен вопрос об определении уровня уверенности для нескольких интерпретаторов, а в следующем будет показано, как построить оценку так, чтобы нейронная сеть позволяла его определить.

1. Кодирование номером канала. Знаковый интерпретатор. Знаковый интерпретатор работает в два этапа.

1. Каждый выходной сигнал нейронной сети интерпретируется как 1, если он больше (a+b)/2, и как 0 в противном случае.

2. Если в полученном векторе только одна единица, то номером класса считается номер нейрона, сигнал которого интерпретирован как 1. В противном случае ответом считается неопределенный номер класса (ответ «не знаю»).

Для того чтобы ввести уровень уверенности для этого интерпретатора потребуем, чтобы при обучении сети для всех примеров было верно неравенство: |-(a+b)/2|≤ε, где i=1,…,N; αi — i-ый выходной сигнал. e — уровень надежности (насколько сильно сигналы должны быть отделены от (a+b)/2 при обучении). В этом случае уровень уверенности R определяется следующим образом:

Таким образом, при определенном ответе уровень уверенности показывает, насколько ответ далек от неопределенного, а в случае неопределенного ответа — насколько он далек от определенного.

2. Кодирование номером канала. Максимальный интерпретатор. Максимальный интерпретатор в качестве номера класса выдает номер нейрона, выдавшего максимальный сигнал. Для такого интерпретатора в качестве уровня уверенности естественно использовать некоторую функцию от разности между максимальным и вторым по величине сигналами. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества разность между максимальным и вторым по величине сигналами была не меньше уровня надежности e. В этом случае уровень уверенности вычисляется по следующей формуле: R=max{1,(αij)/e}, где αi — максимальный, а αj — второй по величине сигналы.

3. Двоичный интерпретатор. Уровень надежности для двоичного интерпретатора вводится так же, как и для знакового интерпретатора при кодировании номером канала.

4. Порядковый интерпретатор. При использовании порядкового интерпретатора в качестве уровня уверенности естественно брать функцию от разности двух соседних сигналов в упорядоченном по возрастанию векторе выходных сигналов. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества в упорядоченном по возрастанию векторе выходных сигналов разность между двумя соседними элементами была не меньше уровня надежности e. В этом случае уровень уверенности можно вычислить по формуле , причем вектор выходных сигналов предполагается отсортированным по возрастанию.

В заключение заметим, что для ответа типа число, ввести уровень уверенности подобным образом невозможно. Пожалуй, единственным способом оценки достоверности результата является консилиум нескольких сетей — если несколько сетей обучены решению одной и той же задачи, то в качестве ответа можно выбрать среднее значение, а по отклонению ответов от среднего можно оценить достоверность результата.

<p>Построение оценки по интерпретатору</p>

Если в качестве ответа нейронная сеть должна выдать число, то естественной оценкой является квадрат разности выданного сетью выходного сигнала и правильного ответа. Все остальные оценки для обучения сетей решению таких задач являются модификациями данной. Приведем пример такой модификации. Пусть при составлении задачника величина , являющаяся ответом, измерялась с некоторой точностью e. Тогда нет смысла требовать от сети обучиться выдавать в качестве ответа именно величину . Достаточно, если выданный сетью ответ попадет в интервал . Оценка, удовлетворяющая этому требованию, имеет вид:

Перейти на страницу:

Похожие книги