4. Если вновь вычисленные синаптические веса отличаются от полученных на предыдущем шаге, то переходим к первому шагу алгоритма.
В пояснении нуждается только второй и третий шаги алгоритма. Из рис. 18в видно, что вычисленные на шаге 2.2 алгоритма поправки будут равны нулю для всех нейронов, кроме нейрона, выдавшего минимальный сигнал. У нейрона, выдавшего минимальный сигнал, первые
Персептрон Розенблатта
Персептрон Розенблатта [146, 181] является исторически первой обучаемой нейронной сетью. Существует несколько версий персептрона. Рассмотрим классический персептрон — сеть с пороговыми нейронами и входными сигналами, равными нулю или единице. Опираясь на результаты, изложенные в работе [146] можно ввести следующие ограничения на структуру сети.
1. Все синаптические веса могут быть целыми числами.
2. Многослойный персептрон по своим возможностям эквивалентен двухслойному. Все нейроны имеют синапс, на который подается постоянный единичный сигнал. Вес этого синапса далее будем называть порогом. Каждый нейрон первого слоя имеет единичные синаптические веса на всех связях, ведущих от входных сигналов, и его порог равен числу входных сигналов сумматора, уменьшенному на два и взятому со знаком минус.
Таким образом, можно ограничиться рассмотрением только двухслойных персептронов с не обучаемым первым слоем. Заметим, что для построения полного первого слоя пришлось бы использовать 2
Классический алгоритм обучения персептрона является частным случаем правила Хебба. Поскольку веса связей первого слоя персептрона являются не обучаемыми, веса нейрона второго слоя в дальнейшем будем называть просто весами. Будем считать, что при предъявлении примера первого класса персептрон должен выдать на выходе нулевой сигнал, а при предъявлении примера второго класса — единичный. Ниже приведено описание алгоритма обучения персептрона.
1. Полагаем все веса равными нулю.
2. Проводим цикл предъявления примеров. Для каждого примера выполняется следующая процедура.
1. Если сеть выдала правильный ответ, то переходим к шагу 2.4.
2. Если на выходе персептрона ожидалась единица, а был получен ноль, то веса связей, по которым прошел единичный сигнал, уменьшаем на единицу.
3. Если на выходе персептрона ожидался ноль, а была получена единица, то веса связей, по которым прошел единичный сигнал, увеличиваем на единицу.
4. Переходим к следующему примеру. Если достигнут конец обучающего множества, то переходим к шагу 3, иначе возвращаемся на шаг 2.1.
3. Если в ходе выполнения второго шага алгоритма хоть один раз выполнялся шаг 2.2 или 2.3 и не произошло зацикливания, то переходим к шагу 2. В противном случае обучение завершено.
В этом алгоритме не предусмотрен механизм отслеживания зацикливания обучения. Этот механизм можно реализовывать по разному. Наиболее экономный в смысле использования дополнительной памяти имеет следующий вид.
1.
2. После цикла предъявлений образов сравниваем веса связей с запомненными. Если текущие веса совпали с запомненными, то произошло зацикливание. В противном случае переходим к шагу 3.
3.
4.
Поскольку длина цикла конечна, то при достаточно большом
Для использования в обучении сети обратного функционирования, необходимо переписать второй шаг алгоритма обучения в следующем виде.
2. Проводим цикл предъявления примеров. Для каждого примера выполняется следующая процедура.
2.1. Если сеть выдала правильный ответ, то переходим к шагу 2.5.
2.2. Если на выходе персептрона ожидалась единица, а был получен ноль, то на выход сети при обратном функционировании подаем Δ=-1.
2.3. Если на выходе персептрона ожидался ноль, а была получена единица, то на выход сети при обратном функционировании подаем Δ=1.