Множества образованы членами (также существует пустое множество, не имеющее членов, но мы можем оставить его за рамками нашего анализа). Например, множество планет Солнечной системы состоит из (насколько мы знаем) восьми членов: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана и Нептуна. Объект «множество планет Солнечной системы» — это абстрактная сущность, существующая только как идея и собирающая под одним названием восемь планет. Каждый из членов этого множества — наоборот, конкретная планета, а не абстракция. Множество планет Солнечной системы не входит в список самих членов: оно не является членом самого себя. Рассел выражал эту идею следующим образом: «Множество, образованное лошадьми, — не лошадь» (мы можем сесть на лошадь, но не на абстрактную сущность). Но некоторые множества действительно являются членами самих себя. Например, подумаем о множестве всех абстрактных сущностей. Оно само является абстрактной сущностью и, следовательно, членом самого себя.
Теперь вернемся к аксиоме выделения. Возьмем множество, связанное со свойством «быть множеством, не являющимся членом самого себя». Пусть множество R образовано всеми множествами, не являющимися членами самого себя. Сформулируем следующий вопрос: является ли R элементом самого себя? Если R является членом самого себя, то выполняется свойство, определяющее R. По нему R не является членом самого себя. Это противоречие. Но если R не является членом самого себя, то не выполняется свойство, определяющее R. Следовательно, если не выполняется свойство, R все-таки является членом самого себя. Получается другое противоречие.
То есть R не может быть членом самого себя, но также не может и не быть им. Это логический парадокс. Множество R (существование которого обусловлено аксиомой выделения) не может существовать, потому что это порождает логическое противоречие. Итак, аксиома выделения, которая казалась такой невинной, на самом деле противоречит самой себе. Это открытие сегодня известно как парадокс Рассела.
Открытие противоречивости теории множеств развязало кризис оснований математики. Если такая невинная с виду аксиома выделения порождает противоречие, чего ждать от теории Кантора с актуальной бесконечностью и «бесконечностями, которые больше, чем другие бесконечности»? Положение осложнялось тем, что теория Кантора уже проникла в основные области математики, такие как анализ и топология.
Из-за открытия Рассела математики задались вопросом о справедливости всех математических открытий по меньшей мере за 30 предыдущих лет. Они начали сомневаться в справедливости любого рассуждения, включающего в себя бесконечность, и даже задавали вопросы о смысле и значении математики. Каков конкретно объект изучения математики? Какие критерии подтверждают справедливость ее рассуждений?
Сам Фреге почувствовал, что открытие Рассела разрушает всю его работу. Во второй том своих «Основных законов...» он добавил следующие слова:
Сразу после этого Фреге оставил борьбу и сдался. Он прожил до 1925 года, но никогда больше не вернулся к теме оснований.
Какую реакцию вызвало открытие парадокса Рассела? С самого начала было предложено два решения. Первая попытка принадлежит самому Расселу и выражена в монументальной работе «Основания математики», которую он написал вместе со своим учителем Альфредом Уайтхедом.