Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Множества образованы членами (также существует пустое множество, не имеющее членов, но мы можем оставить его за рамками нашего анализа). Например, множество планет Солнечной системы состоит из (насколько мы знаем) восьми членов: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана и Нептуна. Объект «множество планет Солнечной системы» — это абстрактная сущность, существующая только как идея и собирающая под одним названием восемь планет. Каждый из членов этого множества — наоборот, конкретная планета, а не абстракция. Множество планет Солнечной системы не входит в список самих членов: оно не является членом самого себя. Рассел выражал эту идею следующим образом: «Множество, образованное лошадьми, — не лошадь» (мы можем сесть на лошадь, но не на абстрактную сущность). Но некоторые множества действительно являются членами самих себя. Например, подумаем о множестве всех абстрактных сущностей. Оно само является абстрактной сущностью и, следовательно, членом самого себя.

Теперь вернемся к аксиоме выделения. Возьмем множество, связанное со свойством «быть множеством, не являющимся членом самого себя». Пусть множество R образовано всеми множествами, не являющимися членами самого себя. Сформулируем следующий вопрос: является ли R элементом самого себя? Если R является членом самого себя, то выполняется свойство, определяющее R. По нему R не является членом самого себя. Это противоречие. Но если R не является членом самого себя, то не выполняется свойство, определяющее R. Следовательно, если не выполняется свойство, R все-таки является членом самого себя. Получается другое противоречие.

То есть R не может быть членом самого себя, но также не может и не быть им. Это логический парадокс. Множество R (существование которого обусловлено аксиомой выделения) не может существовать, потому что это порождает логическое противоречие. Итак, аксиома выделения, которая казалась такой невинной, на самом деле противоречит самой себе. Это открытие сегодня известно как парадокс Рассела.

Открытие противоречивости теории множеств развязало кризис оснований математики. Если такая невинная с виду аксиома выделения порождает противоречие, чего ждать от теории Кантора с актуальной бесконечностью и «бесконечностями, которые больше, чем другие бесконечности»? Положение осложнялось тем, что теория Кантора уже проникла в основные области математики, такие как анализ и топология.

БРАДОБРЕЙ РАССЕЛА

В 1904 году британский философ и математик Бертран Рассел (1872-1970) представил популярную версию своего парадокса. Он предложил представить себе, что в некой деревне есть только один брадобрей, бреющий всех мужчин, которые не бреются сами. Но бреет ли он сам себя? Ответ в том, что брадобрей не может бриться сам, но также не может и не делать этого.

Из-за открытия Рассела математики задались вопросом о справедливости всех математических открытий по меньшей мере за 30 предыдущих лет. Они начали сомневаться в справедливости любого рассуждения, включающего в себя бесконечность, и даже задавали вопросы о смысле и значении математики. Каков конкретно объект изучения математики? Какие критерии подтверждают справедливость ее рассуждений?

Сам Фреге почувствовал, что открытие Рассела разрушает всю его работу. Во второй том своих «Основных законов...» он добавил следующие слова:

«Ученому сложно встретиться с чем-то более нежелательным, чем увидеть, как подрывается фундамент, когда работа уже заканчивается. Таково положение, в которое меня поставило письмо господина Бертрана Рассела, когда работа была уже почти напечатана».

Сразу после этого Фреге оставил борьбу и сдался. Он прожил до 1925 года, но никогда больше не вернулся к теме оснований.

ЛОГИЦИЗМ И ИНТУИЦИОНИЗМ

Какую реакцию вызвало открытие парадокса Рассела? С самого начала было предложено два решения. Первая попытка принадлежит самому Расселу и выражена в монументальной работе «Основания математики», которую он написал вместе со своим учителем Альфредом Уайтхедом.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука