Теперь же, в одном из последних выпусков журнала Nature, опубликована статья другой группы исследователей из Университета Торонто, Канада, которые показали, что участвующие в фотосинтезе молекулы морских водорослей для передачи световой энергии без потерь могут задействовать квантовые процессы и при комнатной температуре (см. Nature 463, 644–647, 4 February 2010). Вплоть до настоящего времени, можно напомнить, подавляющее большинство физиков исключает квантовые процессы в работе биологических организмов, настаивая, что при столь высоких температурах квантовые эффекты не могут сохраняться настолько долго, чтобы давать что-нибудь полезное для жизнеобеспечения.
Для понимания сути того, что сделали в канадском университете, понадобится немного углубиться в нюансы фотосинтеза. Данный процесс начинается в клетке тогда, когда крупные светособирающие структуры, именуемые антеннами, захватывают фотоны. Конкретно в водорослях Chroomonas CCMP270, изучавшихся биофизиками, эти антенны имеют восемь пигментных молекул, вплетенных в более крупную белковую структуру, причем разные пигменты абсорбируют свет из разных частей светового спектра. Затем энергия фотонов проходит через антенны к той части клетки, где она используется для выработки сахара — химического топлива организма.
Критично важным в данном процессе является маршрут, который выбирает энергия при своих прыжках через эти крупные молекулы, потому что чем длиннее маршрут, тем больше могут быть потери. В классической физике считается, что энергия может перемещаться по молекулам только случайным образом. Однако торонтские исследователи обнаружили, что в действительности механизм выбора маршрута для энергии может быть в высшей степени эффективным. А свидетельство тому дает согласованное поведение пигментных молекул в антеннах водорослей Chroomonas.
Сначала учёные коротким лазерным импульсом возбуждала две из этих молекул, из-за чего электроны в пигментных молекулах переходили в квантовую суперпозицию возбужденных состояний. Когда такая суперпозиция схлопывается (коллапсирует), то излучаются фотоны несколько иных длин волн, которые, с одной стороны, свидетельствуют о наличии квантового эффекта, а с другой, в свою очередь, накладываются друг на друга с образованием характерной интерференционной картины. Изучая именно эту структуру интерференции в излучаемом свете, исследователи смогли восстанавливать детали квантовой суперпозиции, которая порождает наблюдаемую картину.
Результаты данного анализа получились воистину удивительными. Оказалось, что в суперпозиции участвуют не только две пигментные молекулы в центре антенн, но также и шесть остальных пигментных молекул. Причем это состояние квантовой когерентности связывает все молекулы необычайно долго — на протяжении 400 фемтосекунд (4 Ч 10
Это открытие, надо повторить, опровергает некоторые давно устоявшиеся в квантовой механике воззрения, согласно которым квантовая когерентность не может появляться нигде, кроме криогенных температур, поскольку горячее окружение мгновенно разрушает хрупкий эффект. Тем не менее, нынешние опыты показывают, что в водорослях Chroomonas подобного рода эффекты идут постоянно при комнатной температуре — 21 градус по Цельсию.
По оценкам других специалистов, также разрабатывающих данное направление, сложность эксперимента, поставленного в Торонто, чрезвычайно высока. Аналогичный результат, полученный в Калифорнийском университете в Беркли в 2007 году, удалось продемонстрировать лишь при температуре минус 196 градусов по Цельсию. Там учёные исследовали бактериохлорофилловый комплекс в зелёных серных бактериях и тоже обнаружили, что пигментные молекулы похожим образом объединяются вместе в квантово-механическую сеть с когерентными состояниями. В итоге же ныне исследователи считают допустимым говорить, что в определённом смысле антенны растений и бактерий выполняют процедуры квантовых вычислений для отыскания наилучших путей передачи энергии.
Сейчас один из ведущих авторов калифорнийской команды, Грег Инджел (Greg Engel), продолжает исследования в Чикагском университете, где похожий по сути эксперимент тоже удалось воспроизвести при значительно более дружественной к жизни температуре 4 °C. Длительность когерентности у этой команды составляет 300 фемтосекунд (см. arxiv.org/abs/1001.5108v1).
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии