- Есть разные варианты, но в целом это композитные материалы, которые обладают необычными свойствами. Их называют метаматериалами. Метаматериал — это структурированный образец, в котором частички определенного вещества особенным образом распределены в матрице из другого вещества.
Внешняя матрица может быть, например, полимером или стеклом, а мелкие частицы, которые в нём распределяются, могут быть как диэлектриками, так и частицами металла. Отличительное свойство таких композитов состоит в том, что важно не только, из каких веществ он состоит, но и какова его микроструктура.
Для того чтобы понять, что такое метаматериал, надо вспомнить, что такое вообще материал. Это среда, которая состоит из элементов, например, из атомов или из молекул. Эти элементы могут быть структурированы, или упорядочены, как в кристалле, или они могут располагаться беспорядочно, как в стекле. Совокупность атомов или молекул можно называть материалом только в том случае, если мы можем усреднить его характеристики по этим мелким элементам; именно в этом случае можно говорить о том или ином материале. Усреднение должно непременно присутствовать, иначе это будет не материал, а набор отдельных атомов, молекул.
Так вот, метаматериалы можно рассматривать как синтетический материал, в котором в качестве базового структурного элемента будут уже не те атомы или молекулы, которые есть в природе, а некие рукотворные объекты, ансамбль искусственных «атомов». Таким образом и удалось создать материалы с небывалыми оптическими свойствами.
- А как устроены метаматериалы?
- Можно привести такой пример. Представьте некий диэлектрик, скажем, стекло, в котором содержатся наномасштабные стержни из золота, брусочки размером примерно 100 на 100 на 800 нанометров. Они объединены в пары, и набор таких пар в диэлектрической матрице и составляют метаматериал. Пара стержней в данном случае — это как бы атом, но конечно, в кавычках, так как она большая. Такие «атомы» делают с помощью электроннолучевой нанолитографии. Подобная технология используются в электронике, в производстве микросхем.
В итоге получается материал, который обладает уникальными свойствами. Скажем, описанный образец обладает отрицательным показателем преломления, что было экспериментально показано в 2005 году исследователями из Университета Пёдъю (Purdue University) в США. Как известно, у вакуума показатель преломления ровно единица, у других, «обычных», веществ (вода, стекло) он больше единицы, а показателя меньше единицы у природных веществ не бывает. А здесь не то что меньше единицы, а даже меньше нуля!
К понятию «метаматериал» есть ещё и другой подход, с позиции уровней организации материи. Можно считать, что тот метаматериал, который я только что приводил в пример, состоит из атомов, составляющих стекло и атомов золота, но организованных сложным образом. Сначала мы должны атомы золота уложить в столбики, а затем эти столбики объединить нужным образом в пары. Один столбик в отдельности не обладает отрицательным показателем преломления, и набор одиночных столбиков тоже не обладает. А вот композитный материал из пар столбиков уже будет обладать.
Таким образом, в таком материале можно выделить два уровня организации исходных атомов. Второй уровень (то есть, объединение в пары) является уже метауровнем с позиции атомов золота. Отсюда и название — метаматериалы.
Базовый структурный элемент метаматериала создается искусственно, он рукотворный, поэтому не может быть слишком маленьким. С другой стороны, раз мы хотим говорить о материале, то есть подходить макроскопически, надо усреднять по большому числу этих элементарных «кирпичиков». Значит, они не могут быть и слишком большими. Так, если рассматривать взаимодействие с излучением, значит, надо усреднить по масштабу меньшему, чем длина волны. Для оптики это примерно 500 нм. И понятно, почему интерес к этому вопросу возник именно сейчас: прогресс технологии сделал возможным создание структурных элементов с размерами меньше микрона.
- А где они применяются?
- Это очень молодая область, и в ней слишком много непонятного. Пока технологическое достижение заключается в том, что удается сделать только очень маленькие образцы метаматериалов. Применений пока мало. Но если говорить не об оптике, а о терагерцевом диапазоне (длина волны на два-три порядка больше, чем в оптике), то здесь уже видны и пути применения таких наработок.
Скажем, созданы такие метаматериалы, представляющие собой полоски из пленок полупроводника, свернутые спиралью и покрытые металлом. Они уложены в виде массива на какую-то подложку. Размер этих полосок меньше, чем длина волны, то есть такое излучение воспринимает этот массив усреднено, как некий специфический материал.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии