Читаем Ценность ваших данных полностью

Для каждого уровня описываются критерии оценки характеристик процессов. Например, модель зрелости может включать критерии оценки эффективности процессов, в том числе степень автоматизации. Она может фокусироваться на политиках и контрольных функциях, а также на деталях процессов.

* DAMA International. DAMA-DMBOK: Data Management Body of Knowledge: 2nd Edition. Technics Publications, 2017. (Русский перевод: DAMA-DMBOK: Свод знаний по управлению данными. Второе издание / Dama International. – М.: Олимп-Бизнес, 2020.)

Оценка зрелости позволяет определить, что работает хорошо, что – недостаточно хорошо и где имеются пробелы. Основываясь на полученных данных, организация может разработать дорожную карту, нацеленную на:

● совершенствование по наиболее важным направлениям, относящимся к процессам, методам, ресурсам и средствам автоматизации;

● обеспечение способностей, которые соответствуют бизнес-стратегии;

● поддержку процессов руководства, которые необходимы для периодической оценки прогресса организации, основанной на характеристиках, заложенных в модель.

Перед началом любого процесса DMMA организации необходимо оценить текущее состояние своих способностей, ресурсов, целей и приоритетов (базовый уровень – baseline). При этом она уже должна обладать некоторой организационной зрелостью – чтобы провести первичную оценку и эффективно отреагировать на ее результаты, определив цели, утвердив дорожную карту и наладив мониторинг прогресса.

* DAMA International. DAMA-DMBOK: Data Management Body of Knowledge: 2nd Edition. Technics Publications, 2017. (Русский перевод: DAMA-DMBOK: Свод знаний по управлению данными. Второе издание / Dama International. – М.: Олимп-Бизнес, 2020.)

На рисунке 9.8 отражено возможное визуальное представление результатов экспертной оценки зрелости управления данными по методологии DMMA. Внешний контур задает необходимые для обеспечения конкурентоспособности организации оценки зрелости по всем функциональным областям, а внутренний отражает фактическое положение дел, выявленное по результатам экспертизы. Области с наибольшим разрывом между желаемым и текущим состояниями являются источником наибольших рисков для организации. Подготовка такого отчета очень полезна для определения приоритетов. Для мониторинга достигнутого прогресса могут использоваться повторные экспертизы.

Существует довольно много разнообразных методик оценки зрелости управления данными, разработанных различными организациями. Любая из них предусматривает наличие определенной рамочной структуры из отдельно оцениваемых областей процессов (process areas) управления данными.

Фокус и содержание различных методик сильно варьируются, в зависимости от того, делается упор на общие вопросы или отраслевую специфику. В то же время во избежание ненужных сложностей, наиболее предпочтительны методики, в которых можно отобразить модель процессов на области знаний по управлению данными.

Из имеющихся сегодня методик наиболее известны, проработаны и подробно описаны две.

1. Модель CMMI-DMM]. Модель зрелости управления данными (DMM) Института моделирования зрелости способностей (Capability Maturity Model Institute, CMMI)[369].

2. Модель EDM Council – DCAM. Модель оценки способностей по у, правлению данными (Data Management Capability Assessment Model [DCAM] Совета по управлению корпоративными данными [Enterprise Data Management Council, EDM Сouncil])[370].

Модель EDM Council – DCAM ориентирована прежде всего на финансовые организации (в соответствии с основным направлением деятельности EDM Council – отстаивание отраслевых интересов в сфере финансовых услуг), и, хотя ее вполне могут применять организации из других отраслей, все же модель CMMI-DMM гораздо более полная и универсальная.

Со следующей главы мы начнем обсуждение отдельных областей знаний (или функций) по управлению данными. Рассмотрим их роли в формировании цепочек поставок данных и вклад в цепочки ценности. При этом для каждой из функций будут приведены обобщенные характеристики ее уровней зрелости.

<p>Литература к главе 9</p>

• Legner C., Pentek T., Otto B. Accumulating Design Knowledge with Reference Models: Insights from 12 Years’ Research into Data Management // Journal of the Association for Information Systems, 2020, 21(3): 735–770. DOI: 10.17705/1jais.00618. – URL: https://www.researchgate.net/publication/341684789_Accumulating_Design_Knowledge_with_Reference_Models_Insights_from_12_Years%27_Research_into_Data_Management

• Van Gils B. Data Management: a Gentle Introduction: Balancing Theory and Practice. Van Haren Publishing, 2020.

<p>Глава 10. Руководство данными</p><p>10.1. Руководство данными и его ключевая роль в управлении данными</p>
Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес