Можно обратить внимание, например, на статью[73]. В ней справедливо отмечается, что, хотя общее количество собираемых данных стремительно возрастает, не все из них образуют базу для информации, не говоря уже о знаниях или мудрости. Нельзя не учитывать тот факт, что данные могут быть неточными или ложными. Таким образом, постоянно растущие собрания больших массивов данных также обязательно включают в себя и постоянно растущие собрания больших массивов неточных или ложных данных. На сегодняшний день нет никаких известных исследований, показывающих, остается ли удельный вес неточных или ложных данных постоянным по мере роста общего объема собираемых данных. Возможно, его величина сохраняется прежней или уменьшается, но не исключено, что доля неточных и ложных данных увеличивается. Это может происходить, в частности, из-за стремительного роста различного рода фейковых новостей или же по причине отрицательной реакции людей на сам сбор данных и т. п.[74] Поэтому просто сбор данных не приносит особой пользы. Что действительно ценно и необходимо, так это увеличение сбора точных и достоверных данных. Приведенные соображения, естественно, предполагают, что конечная цель получения данных – обретение знаний и мудрости, и не распространяются, например, на компании, чья основная деятельность – построение и обслуживание дата-центров, собирающих и хранящих любые данные.
Исходя из этого, в статье предложена нелинейная схема, отражающая взаимоотношения элементов иерархии DIKW (рис. 2.5). На ней элементы представлены в виде перекрывающихся и соприкасающихся областей (диаграмма Венна). Данные и информация не лежат в основе знаний и мудрости, а просто частично входят в их состав. В ближайшие годы область данных, вероятно, будет расти экспоненциально, но еще неизвестно, увеличатся ли в размерах какие-либо другие области. Преимущество приведенной диаграммы в том, что она точнее отражает соотношение представленных на ней понятий, чем пирамида знаний, и, что не менее важно, ориентирует на углубление знаний и обретение мудрости, а не просто на увеличение сбора данных.
* Van Meter, Heather J. Revising the DIKW Pyramid and the Real Relationship Between Data, Information, Knowledge and Wisdom. Law Technology and Humans, 2020, Vol. 2. No. 2, 69–80. DOI: 10.5204/lthj.1470. – URL: https://lthj.qut.edu.au/article/view/1470.
Основываясь на сведениях, полученных в ходе нашего обзора взаимоотношений между элементами иерархии DIKW, можно сказать, что с точки зрения этих взаимоотношений деятельность любой организации представляет собой множество циклических цепочек преобразований «данные – информация – знания»[75][76][77].
Данные появляются в результате выполнения каких-либо действий, например операций по продаже клиенту товара или предоставлению гражданину государственной услуги (рис. 2.6). Эти данные могут быть преобразованы в ценную информацию, в частности, если зафиксировать сведения о том, что для определенного клиента заказ выполнен повторно. В свою очередь эта информация наполняет хранилище, содержащее корпоративные знания и позволяющее на основании совокупности сведений о заказах сделать, допустим, следующий вывод: клиенты старше 40 лет лучше реагируют на недавно проведенную рекламную кампанию.
С учетом этих знаний организация может приступить к дальнейшим действиям, например провести целевую кампанию, направленную на охват клиентов в возрасте до 40 лет, что приведет к увеличению продаж. Соответственно, появятся новые данные, новая информация и новые знания, на основе которых будут осуществляться новые действия. Таким образом, цикл повторяется.
В этом цикле данные играют роль первичного строительного блока. Они возникают из действий и приводят к новым действиям. Эффективность преобразования данных в информацию определяет эффективность получения знаний, а также предпринимаемых на их основе дальнейших действий.
В этой связи область бизнес-аналитики (Business Intelligence, BI), обсуждаемую более подробно в следующих главах, можно представить как «завод по очистке данных» (рис. 2.7). Он превращает сырье (данные) в разнообразные информационные продукты: «информацию», которая собирается и агрегируется в хранилищах данных; «знания», которые собираются из запросов, сообщений и от аналитических инструментов; «планы», которые собираются по кусочкам из правил, закономерностей, моделей и схем, обнаруженных с помощью аналитических инструментов; и «действия», посредством которых бизнес-пользователи реализуют планы, генерирующие события, которые в свою очередь начинают новый цикл[78].
* Эккерсон У. Панели индикаторов как инструмент управления: ключевые показатели эффективности, мониторинг деятельности, оценка результатов / Пер. с англ. – М.: Альпина Бизнес Букс, 2007.