В 1935 году британский астрофизик Артур Стэнли Эддингтон опубликовал в журнале «Сайенс» статью «Новые пути». В ней он привел четыре числа, которые сам назвал «окончательными мировыми константами». Первое из них, сконструированное Эддингтоном во время плавания через Атлантику, — количество протонов в наблюдаемой Вселенной. Второе — альфа или, скорее, ее инверсия: 1/. Третье представляет собой соотношение гравитационной и электромагнитной сил, которые притягивают электрон к протону. Четвертое еще проще: отношение массы протона к массе электрона.
Убеждение, что эти четыре величины без каких-либо дополнений позволяют описать всю Вселенную, воодушевляло Эддингтона; по его мнению, физика могла прекрасно обойтись только ими. Но, будучи ученым и близким другом Альберта Эйнштейна, который в то время пробовал создать всеобъемлющую «унификацию» теоретической физики, Эддингтон досадовал, что их несколько, а не всего одна. «Нынешнее положение с четырьмя константами вместо единственной, — писал он, — показывает, к какому итогу должна стремиться всеобщая теория». Наверное, Эддингтон расстроился бы куда сильнее, если бы узнал, как мы знаем сегодня, что по меньшей мере две из этих «постоянных», судя по многим признакам, склонны к переменам.
Вторая «коварная изменщица» показала себя в свете, уловленном телескопами Европейской южной обсерватории в Чили. В 2006 году группа физиков опубликовала сообщение, что отношение массы протона к массе электрона, обычно обозначаемое греческой буквой «мю», в далеком прошлом было больше. На сей раз сдвиги в спектрограмме касались световых лучей, прошедших через облака водородного газа. Атом водорода состоит из одной пары протон — электрон; его параметры поглощения и отражения фотонов дали точное значение μ. Только не то, какое ожидали исследователи.
Как и в случае с альфой, эта разница затрагивает очень давнее прошлое и крайне незначительна: за 12 миллиардов лет μ «похудела» примерно на 0,002 процента. Но редакционный совет одного из самых престижных журналов — «Физикал ревью леттерс» — счел этот результат достаточно весомым.
Важен он потому, что масса электронов и протонов играет основную роль в измерении сильных взаимодействий, скрепляющих атомные ядра. Ими же связаны кварки — фундаментальные точечные частицы, из которых состоят протоны и нейтроны. А поскольку альфа характеризует слабые взаимодействия, управляющие радиоактивным распадом, и заодно электромагнитные, то теперь уже три из четырех фундаментальных взаимодействий (за вычетом лишь гравитации) начинают казаться довольно шаткими.
Ну и что прикажете с этим делать? Возможно, на австралийца Вебба так повлияла жизнь среди антиподов, но он предлагает самый простой ответ: не напрягайтесь. В то время как многие физики (если не большинство) спокойствия ради отворачиваются от полученных свидетельств изменчивости постоянных, Вебб на это смотрит совсем иначе, но по-своему не менее практично. Альфа, как он любит напоминать, установлена в качестве константы только в 1938 году. Мю и того позже — в 1953-м. И совсем не потому, что ученые якобы как раз тогда додумались, отчего фундаментальные величины, включая гравитационную постоянную, именно таковы. Нет, их вообще никто не может обосновать: отсутствует глубинная теория, которая объясняла бы экспериментально выведенные значения констант. Следовательно, нет вроде бы никаких оснований отчаянно цепляться за убеждение, будто они обязаны хранить постоянство. В 2003 году в своей статье «Меняются ли со временем законы природы?», опубликованной в январском номере журнала «Мир физики», Джон Вебб попробовал охладить иные горячие головы:
«Когда мы ссылаемся на законы природы, то на самом деле подразумеваем строго ограниченный набор концепций, которые подкупают простотой, представляются универсальными и проверены опытным путем. Тем самым люди выдают за законы природы свои собственные научные теории, что сплошь и рядом неправомерно».