В самом упрощенном виде эта операция выполняется так: на один из участков кристалла наносят кислотоупорное покрытие, а затем производят травление кристалла в кислоте. В итоге обе «одежды», появившиеся в результате диффузии, исчезают почти со всей поверхности кристалла и нужная структура остается лишь на небольшом участке. Именно к нему и припаивают выводы эмиттера и базы коллектора.
Мы описали лишь один из нескольких способов производства диффузионных транзисторов, причем описали его очень упрощенно. В действительности диффузионная технология, так же, впрочем, как и любая другая технология производства транзисторов, включает в себя большую серию очень тонких и точных технологических операций. Диффузионная технология хотя и сложнее сплавной, но зато позволяет более точно направлять сам ход процесса и получать транзисторные структуры с меньшим разбросом параметров. При этом сами
Рис. 92.
Поэтому в основном все высокочастотные транзисторы изготовляют диффузионным способом.
Обратите внимание на расположение выводов у сплавного и диффузионного транзисторов малой мощности (рис. 91). В первом случае сам кристалл становится базой, а во втором случае — коллектором. Кристалл устанавливают на кристаллодержатель, и он оказывается электрически соединенным с корпусом. Поэтому у большинства сплавных транзисторов средний вывод, соединенный с корпусом, — это вывод базы, а у многих диффузионных транзисторов средний вывод — это вывод коллектора. Чтобы не перепутать эмиттер с базой (это может кончиться трагично, если, например, подключить коллекторную батарею между коллектором и эмиттером и оставить «висящую базу»; см. рис. 89), на самом корпусе возле вывода эмиттера ставят желтую или белую точку.
Если диффузионная технология позволяет получать лучшие транзисторы, работающие не только на низких, но и на высоких частотах, то почему вообще не отказаться от сплавных транзисторов, которые работают только на низких частотах и производство которых порождает ненужное разнообразие типов приборов? Ответ на это наивное «почему» весьма прост: пока еще сплавные транзисторы делать проще и стоят они пока значительно дешевле. Представьте себе, что вы пришли в магазин, чтобы купить маломощный транзистор для усилителя НЧ, и вам предложили на выбор диффузионный триод стоимостью 2 рубля и сплавной — стоимостью 30 копеек. Конечно же, вы купите сплавной транзистор, который в низкочастотном усилителе работает не хуже диффузионного, а стоит во много раз дешевле.
Подобными соображениями руководствуются и разработчики радиоэлектронной аппаратуры, и специалисты, создающие сами полупроводниковые приборы. Задумываясь о том, нужно или не нужно производить какой-либо тип полупроводникового прибора, приходится учитывать не только его электрические характеристики, но и ту цену, которую за эти характеристики нужно заплатить. Потому что в итоге копейки и рубли стоимости транзистора, как, впрочем, любые рубли и копейки, пересчитываются во многие тысячи киловатт-часов электроэнергии, во многие тонны дорогостоящих материалов, во многие миллионы часов бесценного рабочего времени.
Сравнительная простота производства и невысокая стоимость — вот основные достоинства сплавных транзисторов, благодаря которым они остаются вне конкуренции во многих областях применения: в усилителях НЧ, ключевых схемах, генераторах импульсов и др.
Несколько слов еще об одном из многих методов производства транзисторов — о планарной технологии. Это новое направление, которое считается наиболее перспективным, использует для создания
Отличительная особенность планарной технологии в том, что все основные процессы создания