Читаем Том 27. Поэзия чисел. Прекрасное и математика полностью

Если мы внимательно рассмотрим здание Парфенона, то увидим, что его размеры гармоничны, его колонны, слегка наклоненные к центру, имеют соразмерные пропорции, а их особая форма компенсирует оптические искажения. Даже горизонтальные линии здания — например, линии антаблементов и лестниц — искривлены так, что кажутся прямыми. За счет этого, по словам Джорджа Сантаяны, удалось избежать сухости и жесткости, свойственной длинным прямым линиям. (Возможно, подобные искривления, как отмечает архитектор Оскар Тускетс, объясняются не столько эстетическими, сколько практическими причинами: они обеспечивали сток дождевой воды, попадавшей в перистиль.) Наконец, Парфенон отличает гармония декоративных элементов, в том числе элементов фронтонов главных фасадов, которые мы можем представить — если нам позволит сила воображения, — глядя на рисунки, планы здания и остатки украшений, хранящихся в Британском музее.

Вывод очевиден: красота Парфенона — в гармонии его архитектурных элементов. Взяв этот вывод за основу, зададимся вопросом: из каких элементов состоят математические рассуждения? Они состоят из математических идей. Иными словами, красоту математических рассуждений следует искать в гармоничном сочетании математических идей, из которых они состоят.

Этот вывод, к которому мы пришли не совсем прямым путем, привел еще Годфри Харолд Харди почти три четверти столетия назад в своем эссе «Апология математика». В этой небольшой книге, о которой мы подробнее поговорим в главе 4, Харди пишет: «Математик, подобно художнику или поэту, создает образы. Если его «образы» долговечнее их образов, то потому, что они состоят из идей. Создаваемые математиком образы, подобно образам художника или поэта, должны обладать красотой; подобно краскам или словам, идеи должны сочетаться гармонически. Красота служит первым критерием: в мире нет места безобразной математике».

Парфенон, вид сбоку. Вы можете видеть, какой ущерб был нанесен зданию в 1687 году при взрыве турецкого порохового склада, располагавшегося внутри храма.

Одна из метоп Парфенона, которая в настоящее время хранится в Британском музее. Эта метопа украшала южный фриз храма, декоративные элементы которого были посвящены кентавромахии.

Настало время продемонстрировать гармоничное сочетание математических идей. По разным причинам, которые я объясню чуть позже, я выбрал одно из них, не только очень красивое, но и необычное: это расчет квадратуры сегмента параболы, изложенный Архимедом в «Методе», одном из его фундаментальных трудов. Этому примеру мы посвятим оставшуюся часть главы, так как, учитывая цель, которую поставил перед собой автор этой книги, совершенно необходимо изложить все сопутствующие обстоятельства и привести исторический контекст. Поэтому прежде чем привести сам пример, вкратце расскажем о «жизни и чудесах» Архимеда. Сначала мы изложим историю его смерти — возможно, одну из самых символичных историй античного мира.

Смерть Архимеда и его инженерные достижения

О смерти Архимеда говорится в произведениях разных эпох, начиная от мозаики, найденной при раскопках Помпеи, и заканчивая фресками Пеллегрино Тибальди в библиотеке монастыря Эскориал в Мадриде и картиной Делакруа.

Эта история произошла в 212 году до н. э., спустя пять лет после взятия Сагунта войсками Ганнибала, что стало началом Второй пунической войны. В этом году основные военные действия переместились на Сицилию, в частности в Сиракузы — город, дружественный Карфагену, который в то время осаждали войска римского генерала Марка Клавдия Марцелла. Рим хотел взять остров под контроль и захватить урожай зерновых. Штурм Сиракуз завершился неудачей. Только после длительной осады город сдался армии Марцелла, и римские солдаты занялись грабежами и разбоем. Во время этих беспорядков и был убит Архимед, которому в то время уже перевалило за 70. Римский писатель Валерий Максим спустя два столетия так описывал это событие:

«Римский солдат, ворвавшийся в дом Архимеда, чтобы ограбить его, направил на ученого меч и спросил его, кто он такой. Архимед, целиком погруженный в решение задачи, не назвал себя и, указав на линии, проведенные на песке, сказал: «Пожалуйста, не трогай моих чертежей». Солдат, услышав в ответе ученого оскорбление, отрубил ему голову, и кровь Архимеда смешалась с плодами его науки».

На этой мозаике, найденной на раскопках Помпеи, изображен римский солдат, который через мгновение обезглавит Архимеда, и кровь ученого прольется на его чертежи.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное