Читаем Том 11. Карты метро и нейронные сети. Теория графов полностью

На начальном этапе развития искусственного интеллекта особое внимание привлекали так называемые экспертные системы — программы, которые на основе знаний людей-экспертов могли давать рекомендации, помогающие принимать решения. Экспертные системы имели особый успех в медицине: они помогали ставить диагноз с учетом определенных параметров на основе множества реальных историй болезни. Появились и другие алгоритмы, например генетические, в которых используются механизмы, напоминающие биологическую эволюцию. В генетических алгоритмах случайные ситуации обрабатываются статистическими методами и влияют на алгоритм решения конкретной задачи. Эти алгоритмы применяются в эволюционном и генетическом программировании. Графы в них используются как способ визуализации процессов. В свою очередь, эти алгоритмы, которые можно встретить в различных системах, сетях, в задачах прогнозирования и других, также связаны с теорией графов, теорией игр и логикой.

Моделирование нейронов человеческого мозга и принципа их действия легло в основу новой теории, известной как теория искусственных нейронных сетей, или просто теория нейронных сетей.

Нейронная сеть состоит из единичных элементов, называемых нейронами, которые получают входные сигналы и выдают результат — выходной сигнал. Между нейронами существуют различные взаимосвязи, сами нейроны могут объединяться в слои. В нейронах могут использоваться функции распределения или веса, присваиваемые входным значениям (функции распределения могут изменяться и применяться только к определенным множествам значений). В классическом программировании конкретный алгоритм по очереди выполняет определенные действия и вычисляет результат на основе входных значений. Нейронная же сеть может «обучаться» автоматически на основе больших объемов данных, а затем обрабатывать новые входные данные на основе изученных. Заметим, что в этой теории не только проводится аналогия с нейронами человеческого мозга, но также используются те же понятия, что и при обучении людей: «обучение», «гибкость», «терпимость», «самоорганизация».

Анализ медицинских изображений, распознавание рукописных текстов и голоса, управление работой электростанций, принятие инвестиционных решений, интеллектуальный анализ крупных баз данных, контроль работы промышленных предприятий — теория нейронных сетей находит интересное применение в этих и многих других областях. Очевидно, что нейронные сети можно объединять с экспертными системами, генетическими алгоритмами и другими методами, например нечеткой логикой, в которой значения истинности лежат на интервале между 0 и 1.

Многие нейронные сети можно представить с помощью ориентированных графов: дуги будут обозначать связи между нейронами, их входы и выходы. Подобно схемам метро с линиями и станциями, с помощью графов можно составить схемы нейронных сетей. Иногда нейронную сеть удобнее представить не в виде графа, а в виде электронной таблицы. Чем больше число входных сигналов, нейронов и взаимосвязей между ними, тем сложнее процесс.

Классификацию нейронных сетей можно выполнить по аналогии с графами, разделив нейронные сети на сети прямого распространения (такие сети не содержат циклов и связей между нейронами одного слоя) и рекуррентные, в которых существует минимум один цикл. Нейронные сети также можно классифицировать по типу «обучения» или ввести другие критерии, например тип обрабатываемой ими информации (изображение, речь и так далее).

Любопытно, что нейронные сети показали свою эффективность в математике. Они используются в тех случаях, когда не существует четкого алгоритма вычислений или решения задачи либо имеющиеся алгоритмы излишне сложны. Превосходный пример использования нейронных сетей в математике — это их применение в теории графов для решения задач, подобных задаче коммивояжера, которые нельзя решить иными способами за разумное время.

Прогресс в информатике и рост сложности компьютеров привели к тому, что при решении многих задач стали применяться все более сложные математические теории. Нетрудно поверить, что недалек тот час, когда компьютер сможет почти во всем заменить человека. Машина уже способна выполнять повторяющиеся действия в соответствии с четкими алгоритмами быстрее и эффективнее человека (например, операции с числами, выполнение действий на конвейере, посадка самолетов на автопилоте). Но несмотря на это, компьютер никогда не сможет заменить человеческий интеллект во всей его сложности, с его способностью различать оттенки и сопоставлять разрозненную информацию. Это не поддается программированию.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное