ТЕОРИЯ ИГР
Теория игр была создана Джоном фон Нейманом и Оскаром Моргенштерном с целью разработки новых моделей для решения экономических задач. Развитие этой теории позволило использовать ее не только в экономике, но и в социологии, политике, маркетинге, финансах, психологии и других областях.
Изначально создатели теории игр полагали, что «типичные задачи, в которых рассматривается экономическое поведение, полностью идентичны математическому представлению соответствующих стратегических игр». На основе этого сравнения стало возможным проанализировать игры для одного и нескольких игроков, ввести понятие функции полезности, изучить стратегии различных типов (консервативные, выигрышные и другие), коалиции и голосования, вероятностный анализ и анализ случайных процессов и так далее.
Так как в общем случае число «игроков» (инвесторов, работников, банков) является конечным, так же как и число игр, стратегий и возможных вариантов, то при анализе задач теории игр часто применяется теория графов.
* * *
Интенсивное развитие теории графов на протяжении всего XX века и ее применение во множестве самых разных задач пробудили интерес к преподаванию этой дисциплины в высшей школе.
Курс «Теория графов и ее применение» сегодня изучается как часть курса математики, исследования операций, дискретной математики, входит в программу различных инженерных специальностей (строительство, электроэнергетика, телекоммуникации) и, разумеется, в курс информатики.
Однако до сих пор не решен вопрос о преподавании теории графов в старшей школе. Речь не идет о том, чтобы изучать теорию графов в том же объеме, что и арифметику или геометрию, однако различные эксперименты в сфере образования показывают, что элементы теории графов имеют высокую образовательную ценность и должны быть включены в школьную программу.
Среди преимуществ теории графов применительно к образованию выделим следующие.
1. Графы часто представляют собой прекрасные примеры математических моделей. Несмотря на простоту графов, с их помощью можно описывать и изучать интересные реальные ситуации.
2. Графы — прекрасный пример использования математики в повседневной жизни. Они помогают увидеть, что математика постоянно присутствует в окружающем нас мире.
3. Изучение графов стимулирует индуктивное, комбинаторное и пространственное мышление, что имеет высокую образовательную ценность.
4. Графы помогают решать занимательные и прикладные задачи. Благодаря работам Дьёрдя Пойа мы знаем, что решение задач — один из двигателей обучения математике.
С учетом вышесказанного будет уместно привести цитату из «Алисы в стране чудес» Льюиса Кэрролла, где Алиса разговаривает с Котом:
«— Скажите, пожалуйста, куда мне отсюда идти?
— А куда ты хочешь попасть? — ответил Кот.
— Мне все равно… — сказала Алиса.
— Тогда все равно, куда и идти, — заметил Кот».
Путь, которым должно следовать образование, подразумевает качественное обучение для всех. Образование должно гарантировать актуальность теоретических и практических знаний. Нельзя, чтобы школьная программа ограничивалась рассмотрением задач столетней давности, чтобы в ней не рассматривались важные современные задачи.
Развитие информатики привело к тому, что многие математические модели стали использоваться в автоматических процессах (выполняемых машинами), которые, безусловно, способствуют прогрессу. Учитывая невероятную сложность человеческого мозга, модели искусственного интеллекта должны содержать нетривиальные способы обработки данных. Машина легко справляется с вычислениями, но порекомендовать один из нескольких возможных вариантов — задача намного более сложная.